Exploiting Multi-domain Visual Information for Fake News Detection

The increasing popularity of social media promotes the proliferation of fake news. With the development of multimedia technology, fake news attempts to utilize multimedia content with images or videos to attract and mislead readers for rapid dissemination, which makes visual content an important par...

Full description

Saved in:
Bibliographic Details
Published inProceedings (IEEE International Conference on Data Mining) pp. 518 - 527
Main Authors Qi, Peng, Cao, Juan, Yang, Tianyun, Guo, Junbo, Li, Jintao
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The increasing popularity of social media promotes the proliferation of fake news. With the development of multimedia technology, fake news attempts to utilize multimedia content with images or videos to attract and mislead readers for rapid dissemination, which makes visual content an important part of fake news. Fake-news images, images attached to fake news posts, include not only fake images that are maliciously tampered but also real images that are wrongly used to represent irrelevant events. Hence, how to fully exploit the inherent characteristics of fake-news images is an important but challenging problem for fake news detection. In the real world, fake-news images may have significantly different characteristics from real-news images at both physical and semantic levels, which can be clearly reflected in the frequency and pixel domain, respectively. Therefore, we propose a novel framework Multi-domain Visual Neural Network (MVNN) to fuse the visual information of frequency and pixel domains for detecting fake news. Specifically, we design a CNN-based network to automatically capture the complex patterns of fake-news images in the frequency domain; and utilize a multi-branch CNN-RNN model to extract visual features from different semantic levels in the pixel domain. An attention mechanism is utilized to fuse the feature representations of frequency and pixel domains dynamically. Extensive experiments conducted on a real world dataset demonstrate that MVNN outperforms existing methods with at least 9.2% in accuracy, and can help improve the performance of multi-modal fake news detection by over 5.2%.
AbstractList The increasing popularity of social media promotes the proliferation of fake news. With the development of multimedia technology, fake news attempts to utilize multimedia content with images or videos to attract and mislead readers for rapid dissemination, which makes visual content an important part of fake news. Fake-news images, images attached to fake news posts, include not only fake images that are maliciously tampered but also real images that are wrongly used to represent irrelevant events. Hence, how to fully exploit the inherent characteristics of fake-news images is an important but challenging problem for fake news detection. In the real world, fake-news images may have significantly different characteristics from real-news images at both physical and semantic levels, which can be clearly reflected in the frequency and pixel domain, respectively. Therefore, we propose a novel framework Multi-domain Visual Neural Network (MVNN) to fuse the visual information of frequency and pixel domains for detecting fake news. Specifically, we design a CNN-based network to automatically capture the complex patterns of fake-news images in the frequency domain; and utilize a multi-branch CNN-RNN model to extract visual features from different semantic levels in the pixel domain. An attention mechanism is utilized to fuse the feature representations of frequency and pixel domains dynamically. Extensive experiments conducted on a real world dataset demonstrate that MVNN outperforms existing methods with at least 9.2% in accuracy, and can help improve the performance of multi-modal fake news detection by over 5.2%.
Author Li, Jintao
Qi, Peng
Yang, Tianyun
Guo, Junbo
Cao, Juan
Author_xml – sequence: 1
  givenname: Peng
  surname: Qi
  fullname: Qi, Peng
  organization: Institute of Computing Technology, Chinese Academy of Sciences; University of Chinese Academy of Sciences
– sequence: 2
  givenname: Juan
  surname: Cao
  fullname: Cao, Juan
  organization: Institute of Computing Technology, Chinese Academy of Sciences; University of Chinese Academy of Sciences
– sequence: 3
  givenname: Tianyun
  surname: Yang
  fullname: Yang, Tianyun
  organization: Institute of Computing Technology, Chinese Academy of Sciences; University of Chinese Academy of Sciences
– sequence: 4
  givenname: Junbo
  surname: Guo
  fullname: Guo, Junbo
  organization: Institute of Computing Technology, Chinese Academy of Sciences
– sequence: 5
  givenname: Jintao
  surname: Li
  fullname: Li, Jintao
  organization: Institute of Computing Technology, Chinese Academy of Sciences
BookMark eNotjr1OwzAURg0CiaYwM7D4BRKufR3HHiFtIVILC7BWjnODDPmpklTA29MKpvPpDJ9OxM66viPGrgUkQoC9LfLFJpEgbAIAWp6wSGTSCKVB6VM2k5ip2CijL1g0jh8AqDXCjN0vv3dNH6bQvfPNvplCXPWtCx1_C-PeNbzo6n5o3RT6jh8WX7lP4k_0NfIFTeSP_pKd164Z6eqfc_a6Wr7kj_H6-aHI79ZxkIBT7LEGrBCMLx2lZXloVYjWSOHgWGmcgVJ57yRptDIFB5pS5SvMhHaCcM5u_n4DEW13Q2jd8LM1NgOrAH8BCIRKIw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICDM.2019.00062
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1728146046
9781728146041
EISSN 2374-8486
EndPage 527
ExternalDocumentID 8970940
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i203t-c3f03d308cbae5bb2014339821a046048a80b4cca2e639250a06e54cd3716a1e3
IEDL.DBID RIE
IngestDate Wed Aug 27 07:33:01 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-c3f03d308cbae5bb2014339821a046048a80b4cca2e639250a06e54cd3716a1e3
PageCount 10
ParticipantIDs ieee_primary_8970940
PublicationCentury 2000
PublicationDate 2019-Nov.
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-Nov.
PublicationDecade 2010
PublicationTitle Proceedings (IEEE International Conference on Data Mining)
PublicationTitleAbbrev ICDM
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0036630
Score 2.2872357
Snippet The increasing popularity of social media promotes the proliferation of fake news. With the development of multimedia technology, fake news attempts to utilize...
SourceID ieee
SourceType Publisher
StartPage 518
SubjectTerms Fake news
fake news detection
fake-news images
Feature extraction
Frequency-domain analysis
Fuses
multi domain
Neural networks
Semantics
social media
Social networking (online)
Streaming media
Videos
Visualization
Title Exploiting Multi-domain Visual Information for Fake News Detection
URI https://ieeexplore.ieee.org/document/8970940
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED21nZgKtIhveWDErWsnqbPSUhWkIgaKulV2fJGiQoogWfj12E5SEGJgs7LE8lPuzrn33gFcscSIEIOUhsogDULGqExjQdOIM6MiHUe-0b54iObL4H4VrlpwvdPCIKInn-HALX0v32yT0v0qG8p47Oze2tC2F7dKq9VEXWEzJ6ute0YsHt5NpgtH3HJulMyNwvkxO8WnjlkXFs1LK8bIZlAWepB8_vJj_O-u9qH_LdIjj7v0cwAtzA-h20xpIPVH24MbT7PLHL2ZeLktNdtXleXkOfso1QupBUkOIGJXZKY2SFzsI1MsPFEr78Nydvs0mdN6cgLNOBMFTUTKhBFMJlphqDV3Ln4ilnykXCM0kEoyHVjwONoKxVZBikUYBhY3e31SIxRH0Mm3OR4DMVxxW7Kgc6EJlFFynHKpkzC1tZuNBukJ9NyRrN8qc4x1fRqnfz8-gz0HSiXmO4dO8V7ihc3qhb70cH4BZX2iIw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pCBeNve_BooWu30V0FCSgjHsBwI-36lhB0GN0u_vW23UBjPHhretnSl73vre_7vofQDU00D8BPSSA1ED-glIg04iQNGdUyVFHoGu3xJBzO_Id5MK-h260WBgAc-Qzadul6-XqdFPaqrCOirrV720G7BvcDr1RrbfIuN9hJK_Mej0adUa8fW-qW9aOkdhjOj-kpDjwGDRRvHltyRlbtIlft5POXI-N_3-sAtb5levhpC0CHqAbZEWps5jTg6rNtojtHtFtagjN2glui169ymeHn5UchX3AlSbIhwmaFB3IF2GY_3IfcUbWyFpoN7qe9IalmJ5AlozwnCU8p15yKREkIlGLWx49HgnnStkJ9IQVVvgkfA1OjmDpI0hAC30TO_EBJD_gxqmfrDE4Q1kwyU7SA9aHxpZaimzKhkiA11ZvJB-kpatojWbyV9hiL6jTO_t6-RnvDaTxejEeTx3O0bwNUSvsuUD1_L-DSYHyurlxovwAM3aVs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+International+Conference+on+Data+Mining%29&rft.atitle=Exploiting+Multi-domain+Visual+Information+for+Fake+News+Detection&rft.au=Qi%2C+Peng&rft.au=Cao%2C+Juan&rft.au=Yang%2C+Tianyun&rft.au=Guo%2C+Junbo&rft.date=2019-11-01&rft.pub=IEEE&rft.eissn=2374-8486&rft.spage=518&rft.epage=527&rft_id=info:doi/10.1109%2FICDM.2019.00062&rft.externalDocID=8970940