Detection of Attention Deficit Hyperactivity Disorder from EEG Signal using Discrete Wavelet Transform

Attention deficit hyperactivity disorder (ADHD) is the most prevalent heterogeneous neurodevelopment disorder in children and its diagnosis is based on symptom questionnaires, neuropsychological testing and clinical interviews. There is a great need for early identification of children with ADHD so...

Full description

Saved in:
Bibliographic Details
Published in2019 5th International Conference On Computing, Communication, Control And Automation (ICCUBEA) pp. 1 - 5
Main Authors Joy, R. Catherine, Thomas George, S., Rajan, A. Albert, Subathra, M. S. P.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Attention deficit hyperactivity disorder (ADHD) is the most prevalent heterogeneous neurodevelopment disorder in children and its diagnosis is based on symptom questionnaires, neuropsychological testing and clinical interviews. There is a great need for early identification of children with ADHD so that remedial action can be initiated in very early stage itself that in turn will improve the academic and behavioral performances. The crux of this study is to identify ADHD from EEG signals. In this study, 10 samples participated including 5 with ADHD and 5 with the control group. The electroencephalogram signals are recorded by 16 electrodes in eyes-open and eyes-closed resting conditions. Feature extraction is analyzed by using a Discrete Wavelet Transform. The feature extracted signals are classified using Support Vector Machine and the classification is analyzed. A significant difference has been observed between the samples that have ADHD and the normal subjects.
AbstractList Attention deficit hyperactivity disorder (ADHD) is the most prevalent heterogeneous neurodevelopment disorder in children and its diagnosis is based on symptom questionnaires, neuropsychological testing and clinical interviews. There is a great need for early identification of children with ADHD so that remedial action can be initiated in very early stage itself that in turn will improve the academic and behavioral performances. The crux of this study is to identify ADHD from EEG signals. In this study, 10 samples participated including 5 with ADHD and 5 with the control group. The electroencephalogram signals are recorded by 16 electrodes in eyes-open and eyes-closed resting conditions. Feature extraction is analyzed by using a Discrete Wavelet Transform. The feature extracted signals are classified using Support Vector Machine and the classification is analyzed. A significant difference has been observed between the samples that have ADHD and the normal subjects.
Author Joy, R. Catherine
Subathra, M. S. P.
Thomas George, S.
Rajan, A. Albert
Author_xml – sequence: 1
  givenname: R. Catherine
  surname: Joy
  fullname: Joy, R. Catherine
  organization: Karunya Institute of Technology and Sciences,Department of Electronics and Communication Engineering,Coimbatore,India
– sequence: 2
  givenname: S.
  surname: Thomas George
  fullname: Thomas George, S.
  organization: Karunya Institute of Technology and Sciences,Department of Instrumentation Engineering,Coimbatore,India
– sequence: 3
  givenname: A. Albert
  surname: Rajan
  fullname: Rajan, A. Albert
  organization: Karunya Institute of Technology and Sciences,Department of Electrical and Electronics Engineering,Coimbatore,India
– sequence: 4
  givenname: M. S. P.
  surname: Subathra
  fullname: Subathra, M. S. P.
  organization: Karunya Institute of Technology and Sciences,Department of Electrical and Electronics Engineering,Coimbatore,India
BookMark eNotj8tqwzAURFVoF22aL-hG_YC4eliWtXRtNwkEumhCl0Gx7w0CWw6yGvDfN02zGoY5HJgncu8HD4S8cpZwzszbuix373WRamV4Ihg3ieEiN1rfkbnROdci5ylLBX8kWEGEJrrB0wFpESP4a6kAXeMiXU0nCPYCnF2caOXGIbQQKIahp3W9pF_u6G1Hf0bnj39zEy4--m3P0EGk22D9iEPon8kD2m6E-S1nZPdRb8vVYvO5XJfFZuEEk3HRSGtAs0ZkOUeTsRyVlg3TSoCCg2olKJ4bANQoTQaqPSAzrUCwGU-xNXJGXv69DgD2p-B6G6b97b38BZMOVwE
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCUBEA47591.2019.9128977
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728140421
1728140420
EndPage 5
ExternalDocumentID 9128977
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-c3a9e70c2681f9608f573c0752e5eb5d3e5189eef7f396e5dbf09d2fea614fd93
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:23 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-c3a9e70c2681f9608f573c0752e5eb5d3e5189eef7f396e5dbf09d2fea614fd93
PageCount 5
ParticipantIDs ieee_primary_9128977
PublicationCentury 2000
PublicationDate 2019-Sept.
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-Sept.
PublicationDecade 2010
PublicationTitle 2019 5th International Conference On Computing, Communication, Control And Automation (ICCUBEA)
PublicationTitleAbbrev ICCUBEA
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7403253
Snippet Attention deficit hyperactivity disorder (ADHD) is the most prevalent heterogeneous neurodevelopment disorder in children and its diagnosis is based on symptom...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Attention-Deficit Hyperactivity Disorder (ADHD)
Discrete Wavelet Transform
Electroencephalogram (EEG)
Title Detection of Attention Deficit Hyperactivity Disorder from EEG Signal using Discrete Wavelet Transform
URI https://ieeexplore.ieee.org/document/9128977
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEB3aHsSTSit-E8Gju93sd4613VqFimCLvZVsMilF2IpkL_56k91tRfHgbckGEjIhM5O89wbghodSpjJKHJ4noRPmQjhcKuoEIRNcUJWwSqx6-hRP5uHjIlq04HbHhUHECnyGrv2s3vLlRpT2qqzPzGFq4pU2tE3iVnO19uC6kc3sPwyH87tsYAXsbOJHmdv0_1E4pfIb4wOYbkes4SJvbqlzV3z-EmP875QOoffN0CPPO99zBC0suqBGqCtkVUE2igy0rqGMZIRWJkKTick5K1KUrRdBtrqbxDJMSJbdk5f1ymwrYqHwK_vbBJQaySu3tSk0mW1D3B7Mx9lsOHGaOgrO2vcC7YiAM0w84ccpVSZjSVWUBMLECj5GmEcywIimDFElKmAxRjJXHpO-Qm58t5IsOIZOsSnwBEjsKRlKY788scpnlNMQFfrMtKWSCnUKXbtGy_daKmPZLM_Z383nsG_tVEO2LqCjP0q8ND5e51eVcb8AFnqq9w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zgnpS2cTfRvBou6Vt2uY4t85OtyG4obeRJi9jCJ1IdvGvN2m7ieLBW0kpCXmh33vt930PoRseSBlLGjk8iwInyIRwuFTE8QMmuCAqYoVZ9WgcptPg4ZW-1tDtRgsDAAX5DFx7WfzLl0uxsp_KWsy8TE2-soW2De5Tr1Rr7aDryjizNeh2p3dJx1rY2dKPMLd64kfrlAI5-vtotJ6zJIy8uSudueLzlx3jfxd1gJrfGj38tEGfQ1SDvIFUD3TBrcrxUuGO1iWZEffAGkVonJqqs5BF2Y4ReO28ia3GBCfJPX5ezM3BwpYMP7e3TUqpAb9w251C48k6yW2iaT-ZdFOn6qTgLLy2rx3hcwZRW3hhTJSpWWJFI1-YbMEDChmVPlASMwAVKZ-FQGWm2kx6CrhBbyWZf4Tq-TKHY4TDtpKBNBHMIut9RjgJQIHHzFgsiVAnqGH3aPZemmXMqu05_Xv4Cu2mk9FwNhyMH8_Qno1ZSeA6R3X9sYILg_g6uywC_QUwHq5B
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+5th+International+Conference+On+Computing%2C+Communication%2C+Control+And+Automation+%28ICCUBEA%29&rft.atitle=Detection+of+Attention+Deficit+Hyperactivity+Disorder+from+EEG+Signal+using+Discrete+Wavelet+Transform&rft.au=Joy%2C+R.+Catherine&rft.au=Thomas+George%2C+S.&rft.au=Rajan%2C+A.+Albert&rft.au=Subathra%2C+M.+S.+P.&rft.date=2019-09-01&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FICCUBEA47591.2019.9128977&rft.externalDocID=9128977