Deep Multiway Canonical Correlation Analysis For Multi-Subject Eeg Normalization
The normalization of brain recordings from multiple subjects responding to the natural stimuli is one of the key challenges in auditory neuroscience. The objective of this normalization is to transform the brain data in such a way as to remove the inter-subject redundancies and to boost the componen...
Saved in:
Published in | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) pp. 1245 - 1249 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
06.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The normalization of brain recordings from multiple subjects responding to the natural stimuli is one of the key challenges in auditory neuroscience. The objective of this normalization is to transform the brain data in such a way as to remove the inter-subject redundancies and to boost the component related to the stimuli. In this paper, we propose a deep learning framework to improve the correlation of electroencephalography (EEG) data recorded from multiple subjects engaged in an audio listening task. The proposed model extends the linear multi-way canonical correlation analysis (CCA) for audio-EEG analysis using an auto-encoder network with a shared encoder layer. The model is trained to optimize a combined loss involving correlation and reconstruction. The experiments are performed on EEG data collected from subjects listening to natural speech and music. In these experiments, we show that the proposed deep multi-way CCA (DMCCA) based model significantly improves the correlations over the linear multi-way CCA approach with absolute improvements of 0.08 and 0.29 in terms of the Pearson correlation values for speech and music tasks respectively. |
---|---|
AbstractList | The normalization of brain recordings from multiple subjects responding to the natural stimuli is one of the key challenges in auditory neuroscience. The objective of this normalization is to transform the brain data in such a way as to remove the inter-subject redundancies and to boost the component related to the stimuli. In this paper, we propose a deep learning framework to improve the correlation of electroencephalography (EEG) data recorded from multiple subjects engaged in an audio listening task. The proposed model extends the linear multi-way canonical correlation analysis (CCA) for audio-EEG analysis using an auto-encoder network with a shared encoder layer. The model is trained to optimize a combined loss involving correlation and reconstruction. The experiments are performed on EEG data collected from subjects listening to natural speech and music. In these experiments, we show that the proposed deep multi-way CCA (DMCCA) based model significantly improves the correlations over the linear multi-way CCA approach with absolute improvements of 0.08 and 0.29 in terms of the Pearson correlation values for speech and music tasks respectively. |
Author | Ganapathy, Sriram Katthi, Jaswanth Reddy |
Author_xml | – sequence: 1 givenname: Jaswanth Reddy surname: Katthi fullname: Katthi, Jaswanth Reddy organization: Indian Institute of Science,Learning and Extraction of Acoustic Patterns (LEAP) lab,Bangalore – sequence: 2 givenname: Sriram surname: Ganapathy fullname: Ganapathy, Sriram organization: Indian Institute of Science,Learning and Extraction of Acoustic Patterns (LEAP) lab,Bangalore |
BookMark | eNotUN1KwzAYjaLgNvcE3uQFWr_8tGkuR92mMHVQBe9GmnyVjKwdbYfUp7e4XR04HM7flNzUTY2EUAYxY6AfX_JFUWyFVjyLOXAWa8kkV_KKzLXK2EgzlUKSXJMJF0pHTMPXHZl23R4AMiWzCdk-IR7p6yn0_scMNDdjhLcm0LxpWwym901NF7UJQ-c7umraszYqTuUebU-X-E3fmvZggv_9F9-T28qEDucXnJHP1fIjf4427-ux7ybyHEQfWRDWqsoi2rQSpuKapaVSXDrpVAVQlhokAxQ6UdZqwV0yLnJYCuZSy5yYkYezr0fE3bH1B9MOu8sB4g-fy1Ns |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICASSP39728.2021.9414274 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9781728176055 1728176050 |
EISSN | 2379-190X |
EndPage | 1249 |
ExternalDocumentID | 9414274 |
Genre | orig-research |
GroupedDBID | 23M 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i203t-c03cc7fceec6f3af2916b7724d4d7f00bb90410e3957cc932d5781deb31d6c1d3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:24:59 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-c03cc7fceec6f3af2916b7724d4d7f00bb90410e3957cc932d5781deb31d6c1d3 |
PageCount | 5 |
ParticipantIDs | ieee_primary_9414274 |
PublicationCentury | 2000 |
PublicationDate | 2021-June-6 |
PublicationDateYYYYMMDD | 2021-06-06 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-June-6 day: 06 |
PublicationDecade | 2020 |
PublicationTitle | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) |
PublicationTitleAbbrev | ICASSP |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0008748 |
Score | 2.24997 |
Snippet | The normalization of brain recordings from multiple subjects responding to the natural stimuli is one of the key challenges in auditory neuroscience. The... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1245 |
SubjectTerms | Audio-EEG analysis Brain modeling Canonical correlation analysis (CCA) Correlation Deep CCA multi-way CCA Natural languages Neuroscience Redundancy Signal processing Transforms |
Title | Deep Multiway Canonical Correlation Analysis For Multi-Subject Eeg Normalization |
URI | https://ieeexplore.ieee.org/document/9414274 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qT3rx0Ypv9uDRtPtK0hwltlShpVALvZV9iihtKSmiv97dTVofePAWQpYMO-zOzO73fQNwLbVlUjASWWZcgaJjEQmTsojouKNoqmQS1PYHw6Q_4Q_TeFqDmy0XxhgTwGem5R_DXb5eqLU_KmtnnHBXRe3AjivcSq7WdtftpLyzQergrH2f347HIxdsqcdvUdKqxv5oohJiSG8fBpu_l9CRl9a6kC318UuY8b_mHUDzi62HRts4dAg1Mz-CvW9Cgw0Y3RmzRIFs-ybeUS7mi8CHRLlvzlHC4dBGnwT1Fqvy28htK_6cBnXNExr67Pa1om02YdLrPub9qOqlED1TzIpIYaZUap0pKrFMWOrSQukya665Ti3GUmaYE2z8tZ1SLqnTbikT7UptohNFNDuGujPNnADiVKSp5lgSZjkXImMsToSgllFBpchOoeHnZrYs5TJm1bSc_f36HHa9fwL6KrmAerFam0sX5wt5FRz8CdYGqVU |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTsJAFJ0gLtSNDzC-nYVLC_NqS5emQkCBkAAJOzJPYzRASInRr3dmWvARF-6apk1vZtI5986ccy4AN0IZKjjFgaHaFigq5AHXMQ2wChuSxFJE3m2_14_aY_YwCSclcLvRwmitPflM19ylP8tXc7lyW2X1hGFmq6gtsG1xP8S5Wmuz7jZi1lhzdVBS76R3w-HAwi1xDC6Ca8XbP9qoeBRp7YPe-vs5eeSltspETX78smb8b4AHoPql14ODDRIdgpKeHYG9b1aDFTC413oBvdz2jb_DlM_mXhEJU9eeIyfEwbVDCWzNl_mzgV1Y3E4NbOon2Hf57Wsh3KyCcas5SttB0U0heCaIZoFEVMrY2FBkZCg3xCaGwubWTDEVG4SESBDDSLuDOyltWqfsz4yVLbaxiiRW9BiUbWj6BEBGeBwrhgSmhjHOE0rDiHNiKOFE8OQUVNzYTBe5Yca0GJazv29fg532qNeddjv9x3Ow6-bKc7GiC1DOlit9aVE_E1d-sj8B2z6sng |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=Deep+Multiway+Canonical+Correlation+Analysis+For+Multi-Subject+Eeg+Normalization&rft.au=Katthi%2C+Jaswanth+Reddy&rft.au=Ganapathy%2C+Sriram&rft.date=2021-06-06&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=1245&rft.epage=1249&rft_id=info:doi/10.1109%2FICASSP39728.2021.9414274&rft.externalDocID=9414274 |