Deep Multiway Canonical Correlation Analysis For Multi-Subject Eeg Normalization

The normalization of brain recordings from multiple subjects responding to the natural stimuli is one of the key challenges in auditory neuroscience. The objective of this normalization is to transform the brain data in such a way as to remove the inter-subject redundancies and to boost the componen...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) pp. 1245 - 1249
Main Authors Katthi, Jaswanth Reddy, Ganapathy, Sriram
Format Conference Proceeding
LanguageEnglish
Published IEEE 06.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The normalization of brain recordings from multiple subjects responding to the natural stimuli is one of the key challenges in auditory neuroscience. The objective of this normalization is to transform the brain data in such a way as to remove the inter-subject redundancies and to boost the component related to the stimuli. In this paper, we propose a deep learning framework to improve the correlation of electroencephalography (EEG) data recorded from multiple subjects engaged in an audio listening task. The proposed model extends the linear multi-way canonical correlation analysis (CCA) for audio-EEG analysis using an auto-encoder network with a shared encoder layer. The model is trained to optimize a combined loss involving correlation and reconstruction. The experiments are performed on EEG data collected from subjects listening to natural speech and music. In these experiments, we show that the proposed deep multi-way CCA (DMCCA) based model significantly improves the correlations over the linear multi-way CCA approach with absolute improvements of 0.08 and 0.29 in terms of the Pearson correlation values for speech and music tasks respectively.
AbstractList The normalization of brain recordings from multiple subjects responding to the natural stimuli is one of the key challenges in auditory neuroscience. The objective of this normalization is to transform the brain data in such a way as to remove the inter-subject redundancies and to boost the component related to the stimuli. In this paper, we propose a deep learning framework to improve the correlation of electroencephalography (EEG) data recorded from multiple subjects engaged in an audio listening task. The proposed model extends the linear multi-way canonical correlation analysis (CCA) for audio-EEG analysis using an auto-encoder network with a shared encoder layer. The model is trained to optimize a combined loss involving correlation and reconstruction. The experiments are performed on EEG data collected from subjects listening to natural speech and music. In these experiments, we show that the proposed deep multi-way CCA (DMCCA) based model significantly improves the correlations over the linear multi-way CCA approach with absolute improvements of 0.08 and 0.29 in terms of the Pearson correlation values for speech and music tasks respectively.
Author Ganapathy, Sriram
Katthi, Jaswanth Reddy
Author_xml – sequence: 1
  givenname: Jaswanth Reddy
  surname: Katthi
  fullname: Katthi, Jaswanth Reddy
  organization: Indian Institute of Science,Learning and Extraction of Acoustic Patterns (LEAP) lab,Bangalore
– sequence: 2
  givenname: Sriram
  surname: Ganapathy
  fullname: Ganapathy, Sriram
  organization: Indian Institute of Science,Learning and Extraction of Acoustic Patterns (LEAP) lab,Bangalore
BookMark eNotUN1KwzAYjaLgNvcE3uQFWr_8tGkuR92mMHVQBe9GmnyVjKwdbYfUp7e4XR04HM7flNzUTY2EUAYxY6AfX_JFUWyFVjyLOXAWa8kkV_KKzLXK2EgzlUKSXJMJF0pHTMPXHZl23R4AMiWzCdk-IR7p6yn0_scMNDdjhLcm0LxpWwym901NF7UJQ-c7umraszYqTuUebU-X-E3fmvZggv_9F9-T28qEDucXnJHP1fIjf4427-ux7ybyHEQfWRDWqsoi2rQSpuKapaVSXDrpVAVQlhokAxQ6UdZqwV0yLnJYCuZSy5yYkYezr0fE3bH1B9MOu8sB4g-fy1Ns
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP39728.2021.9414274
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781728176055
1728176050
EISSN 2379-190X
EndPage 1249
ExternalDocumentID 9414274
Genre orig-research
GroupedDBID 23M
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-c03cc7fceec6f3af2916b7724d4d7f00bb90410e3957cc932d5781deb31d6c1d3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:24:59 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-c03cc7fceec6f3af2916b7724d4d7f00bb90410e3957cc932d5781deb31d6c1d3
PageCount 5
ParticipantIDs ieee_primary_9414274
PublicationCentury 2000
PublicationDate 2021-June-6
PublicationDateYYYYMMDD 2021-06-06
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-June-6
  day: 06
PublicationDecade 2020
PublicationTitle Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998)
PublicationTitleAbbrev ICASSP
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008748
Score 2.24997
Snippet The normalization of brain recordings from multiple subjects responding to the natural stimuli is one of the key challenges in auditory neuroscience. The...
SourceID ieee
SourceType Publisher
StartPage 1245
SubjectTerms Audio-EEG analysis
Brain modeling
Canonical correlation analysis (CCA)
Correlation
Deep CCA
multi-way CCA
Natural languages
Neuroscience
Redundancy
Signal processing
Transforms
Title Deep Multiway Canonical Correlation Analysis For Multi-Subject Eeg Normalization
URI https://ieeexplore.ieee.org/document/9414274
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qT3rx0Ypv9uDRtPtK0hwltlShpVALvZV9iihtKSmiv97dTVofePAWQpYMO-zOzO73fQNwLbVlUjASWWZcgaJjEQmTsojouKNoqmQS1PYHw6Q_4Q_TeFqDmy0XxhgTwGem5R_DXb5eqLU_KmtnnHBXRe3AjivcSq7WdtftpLyzQergrH2f347HIxdsqcdvUdKqxv5oohJiSG8fBpu_l9CRl9a6kC318UuY8b_mHUDzi62HRts4dAg1Mz-CvW9Cgw0Y3RmzRIFs-ybeUS7mi8CHRLlvzlHC4dBGnwT1Fqvy28htK_6cBnXNExr67Pa1om02YdLrPub9qOqlED1TzIpIYaZUap0pKrFMWOrSQukya665Ti3GUmaYE2z8tZ1SLqnTbikT7UptohNFNDuGujPNnADiVKSp5lgSZjkXImMsToSgllFBpchOoeHnZrYs5TJm1bSc_f36HHa9fwL6KrmAerFam0sX5wt5FRz8CdYGqVU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTsJAFJ0gLtSNDzC-nYVLC_NqS5emQkCBkAAJOzJPYzRASInRr3dmWvARF-6apk1vZtI5986ccy4AN0IZKjjFgaHaFigq5AHXMQ2wChuSxFJE3m2_14_aY_YwCSclcLvRwmitPflM19ylP8tXc7lyW2X1hGFmq6gtsG1xP8S5Wmuz7jZi1lhzdVBS76R3w-HAwi1xDC6Ca8XbP9qoeBRp7YPe-vs5eeSltspETX78smb8b4AHoPql14ODDRIdgpKeHYG9b1aDFTC413oBvdz2jb_DlM_mXhEJU9eeIyfEwbVDCWzNl_mzgV1Y3E4NbOon2Hf57Wsh3KyCcas5SttB0U0heCaIZoFEVMrY2FBkZCg3xCaGwubWTDEVG4SESBDDSLuDOyltWqfsz4yVLbaxiiRW9BiUbWj6BEBGeBwrhgSmhjHOE0rDiHNiKOFE8OQUVNzYTBe5Yca0GJazv29fg532qNeddjv9x3Ow6-bKc7GiC1DOlit9aVE_E1d-sj8B2z6sng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=Deep+Multiway+Canonical+Correlation+Analysis+For+Multi-Subject+Eeg+Normalization&rft.au=Katthi%2C+Jaswanth+Reddy&rft.au=Ganapathy%2C+Sriram&rft.date=2021-06-06&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=1245&rft.epage=1249&rft_id=info:doi/10.1109%2FICASSP39728.2021.9414274&rft.externalDocID=9414274