Unsupervised Learning of Camera Pose with Compositional Re-estimation

We consider the problem of unsupervised camera pose estimation. Given an input video sequence, our goal is to estimate the camera pose (i.e. the camera motion) between consecutive frames. Traditionally, this problem is tackled by placing strict constraints on the transformation vector or by incorpor...

Full description

Saved in:
Bibliographic Details
Published in2020 IEEE Winter Conference on Applications of Computer Vision (WACV) pp. 11 - 20
Main Authors Nabavi, Seyed Shahabeddin, Hosseinzadeh, Mehrdad, Fahimi, Ramin, Wang, Yang
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We consider the problem of unsupervised camera pose estimation. Given an input video sequence, our goal is to estimate the camera pose (i.e. the camera motion) between consecutive frames. Traditionally, this problem is tackled by placing strict constraints on the transformation vector or by incorporating optical flow through a complex pipeline. We propose an alternative approach that utilizes a compositional re-estimation process for camera pose estimation. Given an input, we first estimate a depth map. Our method then iteratively estimates the camera motion based on the estimated depth map. Our approach significantly improves the predicted camera motion both quantitatively and visually. Furthermore, the re-estimation resolves the problem of out-of-boundaries pixels in a novel and simple way. Another advantage of our approach is that it is adaptable to other camera pose estimation approaches. Experimental analysis on KITTI benchmark dataset demonstrates that our method outperforms existing state-of-the-art approaches in unsupervised camera ego-motion estimation.
AbstractList We consider the problem of unsupervised camera pose estimation. Given an input video sequence, our goal is to estimate the camera pose (i.e. the camera motion) between consecutive frames. Traditionally, this problem is tackled by placing strict constraints on the transformation vector or by incorporating optical flow through a complex pipeline. We propose an alternative approach that utilizes a compositional re-estimation process for camera pose estimation. Given an input, we first estimate a depth map. Our method then iteratively estimates the camera motion based on the estimated depth map. Our approach significantly improves the predicted camera motion both quantitatively and visually. Furthermore, the re-estimation resolves the problem of out-of-boundaries pixels in a novel and simple way. Another advantage of our approach is that it is adaptable to other camera pose estimation approaches. Experimental analysis on KITTI benchmark dataset demonstrates that our method outperforms existing state-of-the-art approaches in unsupervised camera ego-motion estimation.
Author Wang, Yang
Nabavi, Seyed Shahabeddin
Hosseinzadeh, Mehrdad
Fahimi, Ramin
Author_xml – sequence: 1
  givenname: Seyed Shahabeddin
  surname: Nabavi
  fullname: Nabavi, Seyed Shahabeddin
  organization: York University
– sequence: 2
  givenname: Mehrdad
  surname: Hosseinzadeh
  fullname: Hosseinzadeh, Mehrdad
  organization: University of Manitoba
– sequence: 3
  givenname: Ramin
  surname: Fahimi
  fullname: Fahimi, Ramin
  organization: Ryerson University
– sequence: 4
  givenname: Yang
  surname: Wang
  fullname: Wang, Yang
  organization: University of Manitoba
BookMark eNotj81KxDAURqMoOB19AkHyAq1JbpI2y6GMo1BQxNHlcNveaGT6Q1MV317FWX2czTl8CTvph54Yu5Iik1K465dV-ayNyVWmhBKZEw60M0cskbkqpDUG3DFbKKtV6qCQZyyJ8V0IcNLBgq23ffwYafoMkVpeEU596F_54HmJHU3IH4ZI_CvMb7wcunGIYQ5Dj3v-SCnFOXT4x-fs1OM-0sVhl2x7s34qb9PqfnNXrqo0KAFzWpO1bQO1B-8F1UjeWiyUAV-jBiUa0mhybNG1qIvcEDW-NUKisRK0z2HJLv-9gYh24_Sbn753h8vwA5OfTzk
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WACV45572.2020.9093495
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 1728165539
9781728165530
EISSN 2642-9381
EndPage 20
ExternalDocumentID 9093495
Genre orig-research
GroupedDBID 29G
29O
6IE
6IF
6IK
6IL
6IM
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
JC5
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i203t-be66dc3bf3ff0ebaef66a8253fba4320ce4a57ada9da4875eecfd501a56134f73
IEDL.DBID RIE
IngestDate Wed Jun 26 19:28:57 EDT 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-be66dc3bf3ff0ebaef66a8253fba4320ce4a57ada9da4875eecfd501a56134f73
PageCount 10
ParticipantIDs ieee_primary_9093495
PublicationCentury 2000
PublicationDate 2020-March
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-March
PublicationDecade 2020
PublicationTitle 2020 IEEE Winter Conference on Applications of Computer Vision (WACV)
PublicationTitleAbbrev WACV
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0039193
Score 2.2032156
Snippet We consider the problem of unsupervised camera pose estimation. Given an input video sequence, our goal is to estimate the camera pose (i.e. the camera motion)...
SourceID ieee
SourceType Publisher
StartPage 11
SubjectTerms Cameras
Image reconstruction
Pose estimation
Unsupervised learning
Video sequences
Visual odometry
Title Unsupervised Learning of Camera Pose with Compositional Re-estimation
URI https://ieeexplore.ieee.org/document/9093495
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bTp6mbuJvcvBou7Zp2uYoY2MIyhCnu42keRFRumHbi3-9eW02UTx4K4HS8pK-X_2-7xFyhRLpTGZgD6-OvJgHyhNcMU9HKgSlBQ4rR7TFfTJbxLdLvuyQ6x0XBgAa8Bn4eNn8y9frvMZW2UjY8tsm9F3STYVouVpbr8uEzUQcAzgMxOj5ZvwUc54i1yoKfHfnjxEqTQSZ9snd9tktcOTNryvl55-_ZBn_-3L7ZPjN1aPzXRQ6IB0oDknfJZfUfbrlgEwWRVlv0DOUdt3Jqr7QtaFjiY0pOl-XQLEtS9FHOCyXfKcP4KESR0txHJLFdPI4nnluhoL3GgWs8hQkic6ZMsyYAJQEkyTSVoXMKBmzKMghljyVWgotsXYByI3mQSixsIhNyo5Ir1gXcExoCEZnJpQmUyYGIwRPQVvDS5bZNCNjJ2SAVlltWpmMlTPI6d_LZ2QPd6aFc52TXvVRw4WN75W6bDb2CyBWpys
link.rule.ids 310,311,783,787,792,793,799,23944,23945,25154,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT4MwFG7mPOhp6mb8bQ8eZQKlQI9m2TJ1Wxaz6W5LS1-N0cAicPGvt4VuRuPBG2lCIK_l_eL7vofQlZFIJzwGfXil7wTUFQ6jgjjSFx4IycywcoO2mITDeXC_oIsGut5wYQCgAp9B11xW__JllpSmVXbDdPmtE_ottE1NXlGztdZ-lzCdi1gOsOeym-fb3lNAaWTYVr7btff-GKJSxZBBC43XT6-hI2_dshDd5POXMON_X28Pdb7Zeni6iUP7qAHpAWrZ9BLbjzdvo_48zcuV8Q25XrfCqi84U7jHTWsKT7McsGnMYuMlLJqLv-NHcIwWR01y7KD5oD_rDR07RcF59V1SOALCUCZEKKKUC4KDCkOu60KiBA-I7yYQcBpxyZnkpnoBSJSkrsdNaRGoiByiZpqlcISwB0rGyuMqFioAxRiNQGrDcxLrRCMmx6htrLJc1UIZS2uQk7-XL9HOcDYeLUd3k4dTtGt2qQZ3naFm8VHCuY72hbioNvkLDwuqeA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2020+IEEE+Winter+Conference+on+Applications+of+Computer+Vision+%28WACV%29&rft.atitle=Unsupervised+Learning+of+Camera+Pose+with+Compositional+Re-estimation&rft.au=Nabavi%2C+Seyed+Shahabeddin&rft.au=Hosseinzadeh%2C+Mehrdad&rft.au=Fahimi%2C+Ramin&rft.au=Wang%2C+Yang&rft.date=2020-03-01&rft.pub=IEEE&rft.eissn=2642-9381&rft.spage=11&rft.epage=20&rft_id=info:doi/10.1109%2FWACV45572.2020.9093495&rft.externalDocID=9093495