Unsupervised Learning of Camera Pose with Compositional Re-estimation
We consider the problem of unsupervised camera pose estimation. Given an input video sequence, our goal is to estimate the camera pose (i.e. the camera motion) between consecutive frames. Traditionally, this problem is tackled by placing strict constraints on the transformation vector or by incorpor...
Saved in:
Published in | 2020 IEEE Winter Conference on Applications of Computer Vision (WACV) pp. 11 - 20 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We consider the problem of unsupervised camera pose estimation. Given an input video sequence, our goal is to estimate the camera pose (i.e. the camera motion) between consecutive frames. Traditionally, this problem is tackled by placing strict constraints on the transformation vector or by incorporating optical flow through a complex pipeline. We propose an alternative approach that utilizes a compositional re-estimation process for camera pose estimation. Given an input, we first estimate a depth map. Our method then iteratively estimates the camera motion based on the estimated depth map. Our approach significantly improves the predicted camera motion both quantitatively and visually. Furthermore, the re-estimation resolves the problem of out-of-boundaries pixels in a novel and simple way. Another advantage of our approach is that it is adaptable to other camera pose estimation approaches. Experimental analysis on KITTI benchmark dataset demonstrates that our method outperforms existing state-of-the-art approaches in unsupervised camera ego-motion estimation. |
---|---|
AbstractList | We consider the problem of unsupervised camera pose estimation. Given an input video sequence, our goal is to estimate the camera pose (i.e. the camera motion) between consecutive frames. Traditionally, this problem is tackled by placing strict constraints on the transformation vector or by incorporating optical flow through a complex pipeline. We propose an alternative approach that utilizes a compositional re-estimation process for camera pose estimation. Given an input, we first estimate a depth map. Our method then iteratively estimates the camera motion based on the estimated depth map. Our approach significantly improves the predicted camera motion both quantitatively and visually. Furthermore, the re-estimation resolves the problem of out-of-boundaries pixels in a novel and simple way. Another advantage of our approach is that it is adaptable to other camera pose estimation approaches. Experimental analysis on KITTI benchmark dataset demonstrates that our method outperforms existing state-of-the-art approaches in unsupervised camera ego-motion estimation. |
Author | Wang, Yang Nabavi, Seyed Shahabeddin Hosseinzadeh, Mehrdad Fahimi, Ramin |
Author_xml | – sequence: 1 givenname: Seyed Shahabeddin surname: Nabavi fullname: Nabavi, Seyed Shahabeddin organization: York University – sequence: 2 givenname: Mehrdad surname: Hosseinzadeh fullname: Hosseinzadeh, Mehrdad organization: University of Manitoba – sequence: 3 givenname: Ramin surname: Fahimi fullname: Fahimi, Ramin organization: Ryerson University – sequence: 4 givenname: Yang surname: Wang fullname: Wang, Yang organization: University of Manitoba |
BookMark | eNotj81KxDAURqMoOB19AkHyAq1JbpI2y6GMo1BQxNHlcNveaGT6Q1MV317FWX2czTl8CTvph54Yu5Iik1K465dV-ayNyVWmhBKZEw60M0cskbkqpDUG3DFbKKtV6qCQZyyJ8V0IcNLBgq23ffwYafoMkVpeEU596F_54HmJHU3IH4ZI_CvMb7wcunGIYQ5Dj3v-SCnFOXT4x-fs1OM-0sVhl2x7s34qb9PqfnNXrqo0KAFzWpO1bQO1B-8F1UjeWiyUAV-jBiUa0mhybNG1qIvcEDW-NUKisRK0z2HJLv-9gYh24_Sbn753h8vwA5OfTzk |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/WACV45572.2020.9093495 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 1728165539 9781728165530 |
EISSN | 2642-9381 |
EndPage | 20 |
ExternalDocumentID | 9093495 |
Genre | orig-research |
GroupedDBID | 29G 29O 6IE 6IF 6IK 6IL 6IM 6IN AAJGR ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI JC5 M43 OCL RIE RIL RNS |
ID | FETCH-LOGICAL-i203t-be66dc3bf3ff0ebaef66a8253fba4320ce4a57ada9da4875eecfd501a56134f73 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:28:57 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-be66dc3bf3ff0ebaef66a8253fba4320ce4a57ada9da4875eecfd501a56134f73 |
PageCount | 10 |
ParticipantIDs | ieee_primary_9093495 |
PublicationCentury | 2000 |
PublicationDate | 2020-March |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-March |
PublicationDecade | 2020 |
PublicationTitle | 2020 IEEE Winter Conference on Applications of Computer Vision (WACV) |
PublicationTitleAbbrev | WACV |
PublicationYear | 2020 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0039193 |
Score | 2.2032156 |
Snippet | We consider the problem of unsupervised camera pose estimation. Given an input video sequence, our goal is to estimate the camera pose (i.e. the camera motion)... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 11 |
SubjectTerms | Cameras Image reconstruction Pose estimation Unsupervised learning Video sequences Visual odometry |
Title | Unsupervised Learning of Camera Pose with Compositional Re-estimation |
URI | https://ieeexplore.ieee.org/document/9093495 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bTp6mbuJvcvBou7Zp2uYoY2MIyhCnu42keRFRumHbi3-9eW02UTx4K4HS8pK-X_2-7xFyhRLpTGZgD6-OvJgHyhNcMU9HKgSlBQ4rR7TFfTJbxLdLvuyQ6x0XBgAa8Bn4eNn8y9frvMZW2UjY8tsm9F3STYVouVpbr8uEzUQcAzgMxOj5ZvwUc54i1yoKfHfnjxEqTQSZ9snd9tktcOTNryvl55-_ZBn_-3L7ZPjN1aPzXRQ6IB0oDknfJZfUfbrlgEwWRVlv0DOUdt3Jqr7QtaFjiY0pOl-XQLEtS9FHOCyXfKcP4KESR0txHJLFdPI4nnluhoL3GgWs8hQkic6ZMsyYAJQEkyTSVoXMKBmzKMghljyVWgotsXYByI3mQSixsIhNyo5Ir1gXcExoCEZnJpQmUyYGIwRPQVvDS5bZNCNjJ2SAVlltWpmMlTPI6d_LZ2QPd6aFc52TXvVRw4WN75W6bDb2CyBWpys |
link.rule.ids | 310,311,783,787,792,793,799,23944,23945,25154,27939,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT4MwFG7mPOhp6mb8bQ8eZQKlQI9m2TJ1Wxaz6W5LS1-N0cAicPGvt4VuRuPBG2lCIK_l_eL7vofQlZFIJzwGfXil7wTUFQ6jgjjSFx4IycywcoO2mITDeXC_oIsGut5wYQCgAp9B11xW__JllpSmVXbDdPmtE_ottE1NXlGztdZ-lzCdi1gOsOeym-fb3lNAaWTYVr7btff-GKJSxZBBC43XT6-hI2_dshDd5POXMON_X28Pdb7Zeni6iUP7qAHpAWrZ9BLbjzdvo_48zcuV8Q25XrfCqi84U7jHTWsKT7McsGnMYuMlLJqLv-NHcIwWR01y7KD5oD_rDR07RcF59V1SOALCUCZEKKKUC4KDCkOu60KiBA-I7yYQcBpxyZnkpnoBSJSkrsdNaRGoiByiZpqlcISwB0rGyuMqFioAxRiNQGrDcxLrRCMmx6htrLJc1UIZS2uQk7-XL9HOcDYeLUd3k4dTtGt2qQZ3naFm8VHCuY72hbioNvkLDwuqeA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2020+IEEE+Winter+Conference+on+Applications+of+Computer+Vision+%28WACV%29&rft.atitle=Unsupervised+Learning+of+Camera+Pose+with+Compositional+Re-estimation&rft.au=Nabavi%2C+Seyed+Shahabeddin&rft.au=Hosseinzadeh%2C+Mehrdad&rft.au=Fahimi%2C+Ramin&rft.au=Wang%2C+Yang&rft.date=2020-03-01&rft.pub=IEEE&rft.eissn=2642-9381&rft.spage=11&rft.epage=20&rft_id=info:doi/10.1109%2FWACV45572.2020.9093495&rft.externalDocID=9093495 |