AD4ML: Axiomatic Design to Specify Machine Learning Solutions for Manufacturing

Machine learning is increasingly adopted in manufacturing use cases, e.g., for fault detection in a production line. Each new use case requires developing its own machine learning (ML) solution. A ML solution integrates different software components to read, process, and analyze all use case data, a...

Full description

Saved in:
Bibliographic Details
Published in2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI) pp. 148 - 155
Main Authors Zacarias, Alejandro Gabriel Villanueva, Ghabri, Rachaa, Reimann, Peter
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.08.2020
Subjects
Online AccessGet full text
DOI10.1109/IRI49571.2020.00029

Cover

Loading…
Abstract Machine learning is increasingly adopted in manufacturing use cases, e.g., for fault detection in a production line. Each new use case requires developing its own machine learning (ML) solution. A ML solution integrates different software components to read, process, and analyze all use case data, as well as to finally generate the output that domain experts need for their decision-making. The process to design a system specification for a ML solution is not straight-forward. It entails two types of complexity: (1) The technical complexity of selecting combinations of ML algorithms and software components that suit a use case; (2) the organizational complexity of integrating different requirements from a multidisciplinary team of, e.g., domain experts, data scientists, and IT specialists. In this paper, we propose several adaptations to Axiomatic Design in order to design ML solution specifications that handle these complexities. We call this Axiomatic Design for Machine Learning (AD4ML). We apply AD4ML to specify a ML solution for a fault detection use case and discuss to what extent our approach conquers the above-mentioned complexities. We also discuss how AD4ML facilitates the agile design of ML solutions.
AbstractList Machine learning is increasingly adopted in manufacturing use cases, e.g., for fault detection in a production line. Each new use case requires developing its own machine learning (ML) solution. A ML solution integrates different software components to read, process, and analyze all use case data, as well as to finally generate the output that domain experts need for their decision-making. The process to design a system specification for a ML solution is not straight-forward. It entails two types of complexity: (1) The technical complexity of selecting combinations of ML algorithms and software components that suit a use case; (2) the organizational complexity of integrating different requirements from a multidisciplinary team of, e.g., domain experts, data scientists, and IT specialists. In this paper, we propose several adaptations to Axiomatic Design in order to design ML solution specifications that handle these complexities. We call this Axiomatic Design for Machine Learning (AD4ML). We apply AD4ML to specify a ML solution for a fault detection use case and discuss to what extent our approach conquers the above-mentioned complexities. We also discuss how AD4ML facilitates the agile design of ML solutions.
Author Reimann, Peter
Ghabri, Rachaa
Zacarias, Alejandro Gabriel Villanueva
Author_xml – sequence: 1
  givenname: Alejandro Gabriel Villanueva
  surname: Zacarias
  fullname: Zacarias, Alejandro Gabriel Villanueva
  organization: University of Stuttgart, GSaME,Stuttgart,Germany
– sequence: 2
  givenname: Rachaa
  surname: Ghabri
  fullname: Ghabri, Rachaa
  organization: University of Stuttgart, IPVS,Stuttgart,Germany
– sequence: 3
  givenname: Peter
  surname: Reimann
  fullname: Reimann, Peter
  organization: University of Stuttgart, GSaME,Stuttgart,Germany
BookMark eNotjEtOwzAUAI0ECyg9QTe-QMKzHcd57KKWT6RUlSisKzt5LpZap8pHorcnEqxmMaN5YLexi8TYSkAqBOBT9VFlqI1IJUhIAUDiDVuiKYSRxVzozNyzXbnJtvUzL39Cd7ZjaPiGhnCMfOz4_kJN8Fe-tc13iMRrsn0M8cj33WkaQxcH7rt-1nHythmnfnaP7M7b00DLfy7Y1-vL5_o9qXdv1bqskyBBjYmzDQnwhUANDnPrjXOtJ6sBlPF5YQqLTrfWikICEoi2Vegz9Mo0uSOtFmz19w1EdLj04Wz76wEFilyi-gXIekxd
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IRI49571.2020.00029
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728110547
1728110548
EndPage 155
ExternalDocumentID 9191629
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-bace10f81950b96af7bbdfea50037f6878a9b5daa18209e01dd39f49f37c6be53
IEDL.DBID RIE
IngestDate Mon Jul 08 05:39:20 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-bace10f81950b96af7bbdfea50037f6878a9b5daa18209e01dd39f49f37c6be53
PageCount 8
ParticipantIDs ieee_primary_9191629
PublicationCentury 2000
PublicationDate 2020-Aug.
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-Aug.
PublicationDecade 2020
PublicationTitle 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI)
PublicationTitleAbbrev IRI
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7462667
Snippet Machine learning is increasingly adopted in manufacturing use cases, e.g., for fault detection in a production line. Each new use case requires developing its...
SourceID ieee
SourceType Publisher
StartPage 148
SubjectTerms Complexity theory
design
Fault detection
Machine learning
Machine learning algorithms
manufacturing
Production
Software
Software algorithms
Title AD4ML: Axiomatic Design to Specify Machine Learning Solutions for Manufacturing
URI https://ieeexplore.ieee.org/document/9191629
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH5sO3lS2cTf5ODRbm3TJI234RybWBVxsNtI0kSG0Iq0oP71JmmdIh68heaQknd438v7vu8BnNkSWdrERoNcERUkxuBAqMQZIROTcKG40a6jm93S2SK5XpJlB843WhittSef6aFb-l5-XqraPZWNuC0uaMy70LWFW6PVao2EopCP5g9zi_aZK_pix9cKHWz8MTLFZ4zpNmRfZzVEkedhXcmh-vhlw_jfn9mBwbc2D91vss4udHTRh7vxJMluLtD4bV16D1Y08cwMVJXIT5g37yjztEmNWkfVJ7R5EUMWuNrtonYqBy9bHMBievV4OQvaUQnBOg5xFUihdBQa1xQLJafCMClzo924A8wMTVkquCS5EM6vneswynPMbTAMZopKTfAe9Iqy0PuAIsyEjI0hBHOLrlgamUinsVKGWiSO8wPou8tYvTRuGKv2Hg7__nwEWy4cDWXuGHrVa61PbBqv5KmP3yejf59Z
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VMsAEqEV844GRtEkcJzFbRalSaApCrdStsh0bVUgJQokE_HpsJxSEGNiseHDkG94737t3ABc6ReYa2EInE0Q4gVLYYSIwRshEBZQJqqSp6KbTMJkHtwuyaMHluhdGSmnFZ7JnlraWnxWiMk9lfaqTi9CnG7CpcZ94dbdWYyXkubQ_fhxrvh-ZtM83ii3XEMcfQ1MsZox2IP06rZaKPPeqkvfExy8jxv_-zi50v7vz0MMad_agJfMO3A-GQTq5QoO3VWFdWNHQajNQWSA7Y169o9QKJyVqPFWf0PpNDGnqqrfzyvQ52MbFLsxHN7PrxGmGJTgr38Wlw5mQnqtMWczlNGQq4jxT0gw8wJEK4yhmlJOMMePYTqXrZRmmOhwKRyLkkuB9aOdFLg8AeThi3FeKEEw1v4piT3ky9oVQoebiODuEjrmM5Uvth7Fs7uHo78_nsJXM0slyMp7eHcO2CU0toDuBdvlayVMN6iU_s7H8BCRmoqI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+IEEE+21st+International+Conference+on+Information+Reuse+and+Integration+for+Data+Science+%28IRI%29&rft.atitle=AD4ML%3A+Axiomatic+Design+to+Specify+Machine+Learning+Solutions+for+Manufacturing&rft.au=Zacarias%2C+Alejandro+Gabriel+Villanueva&rft.au=Ghabri%2C+Rachaa&rft.au=Reimann%2C+Peter&rft.date=2020-08-01&rft.pub=IEEE&rft.spage=148&rft.epage=155&rft_id=info:doi/10.1109%2FIRI49571.2020.00029&rft.externalDocID=9191629