EPP-MVSNet: Epipolar-assembling based Depth Prediction for Multi-view Stereo

In this paper, we proposed EPP-MVSNet, a novel deep learning network for 3D reconstruction from multi-view stereo (MVS). EPP-MVSNet can accurately aggregate features at high resolution to a limited cost volume with an optimal depth range, thus, leads to effective and efficient 3D construction. Disti...

Full description

Saved in:
Bibliographic Details
Published inProceedings / IEEE International Conference on Computer Vision pp. 5712 - 5720
Main Authors Ma, Xinjun, Gong, Yue, Wang, Qirui, Huang, Jingwei, Chen, Lei, Yu, Fan
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we proposed EPP-MVSNet, a novel deep learning network for 3D reconstruction from multi-view stereo (MVS). EPP-MVSNet can accurately aggregate features at high resolution to a limited cost volume with an optimal depth range, thus, leads to effective and efficient 3D construction. Distinct from existing works which measure feature cost at discrete positions which affects the 3D reconstruction accuracy, EPP-MVSNet introduces an epipolar-assembling-based kernel that operates on adaptive intervals along epipolar lines for making full use of the image resolution. Further, we introduce an entropy-based refining strategy where the cost volume describes the space geometry with the little redundancy. Moreover, we design a light-weighted network with Pseudo-3D convolutions integrated to achieve high accuracy and efficiency. We have conducted extensive experiments on challenging datasets Tanks & Temples(TNT), ETH3D and DTU. As a result, we achieve promising results on all datasets and the highest F-Score on the online TNT intermediate benchmark. Code is available at https://gitee.com/mindspore/mindspore/tree/master/model_zoo/research/cv/eppmvsnet.
AbstractList In this paper, we proposed EPP-MVSNet, a novel deep learning network for 3D reconstruction from multi-view stereo (MVS). EPP-MVSNet can accurately aggregate features at high resolution to a limited cost volume with an optimal depth range, thus, leads to effective and efficient 3D construction. Distinct from existing works which measure feature cost at discrete positions which affects the 3D reconstruction accuracy, EPP-MVSNet introduces an epipolar-assembling-based kernel that operates on adaptive intervals along epipolar lines for making full use of the image resolution. Further, we introduce an entropy-based refining strategy where the cost volume describes the space geometry with the little redundancy. Moreover, we design a light-weighted network with Pseudo-3D convolutions integrated to achieve high accuracy and efficiency. We have conducted extensive experiments on challenging datasets Tanks & Temples(TNT), ETH3D and DTU. As a result, we achieve promising results on all datasets and the highest F-Score on the online TNT intermediate benchmark. Code is available at https://gitee.com/mindspore/mindspore/tree/master/model_zoo/research/cv/eppmvsnet.
Author Ma, Xinjun
Gong, Yue
Wang, Qirui
Yu, Fan
Huang, Jingwei
Chen, Lei
Author_xml – sequence: 1
  givenname: Xinjun
  surname: Ma
  fullname: Ma, Xinjun
  email: maxinjun1@huawei.com
  organization: Huawei Technologies,Distributed and Parallel Software Lab
– sequence: 2
  givenname: Yue
  surname: Gong
  fullname: Gong, Yue
  email: gongyue1@huawei.com
  organization: Huawei Technologies,Distributed and Parallel Software Lab
– sequence: 3
  givenname: Qirui
  surname: Wang
  fullname: Wang, Qirui
  email: wangqirui1@huawei.com
  organization: Huawei Technologies,Distributed and Parallel Software Lab
– sequence: 4
  givenname: Jingwei
  surname: Huang
  fullname: Huang, Jingwei
  email: huangjingwei6@huawei.com
  organization: Huawei Technologies,Distributed and Parallel Software Lab
– sequence: 5
  givenname: Lei
  surname: Chen
  fullname: Chen, Lei
  email: leichen@cse.ust.hk
  organization: Hong Kong University of Science and Technology,Department of Computer Science and Engineering
– sequence: 6
  givenname: Fan
  surname: Yu
  fullname: Yu, Fan
  email: fan.yu@huawei.com
  organization: Huawei Technologies,Distributed and Parallel Software Lab
BookMark eNotzE1PgzAYAOBqNHGb-wV66B8ovv2C1pvBqUuYkkx3XUp50RoGpDCN_96Dnp7bMydnXd8hIdccEs7B3qzzfKeMFSIRIHgCoFNzQpY2MzxNtRKGC31KZkIaYJkGdUHm4_gJIK0w6YwUq7Jkm932GadbuhrC0LcuMjeOeKja0L3Tyo1Y03scpg9aRqyDn0Lf0aaPdHNsp8C-An7T7YQR-0ty3rh2xOW_C_L2sHrNn1jx8rjO7woWBMiJVUoi8pobD7KRynntmipr6gq4qsFajcZqazIE4bSWznihlPbeVtopp7xckKu_NyDifojh4OLP3macyyyVvxUfT7k
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICCV48922.2021.00568
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781665428125
1665428120
EISSN 2380-7504
EndPage 5720
ExternalDocumentID 9711376
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-b43ee1d18c03f34ac5afb7fdb014d0995e895987e02a553a8c2445cc9b5a4a4c3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:25:42 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-b43ee1d18c03f34ac5afb7fdb014d0995e895987e02a553a8c2445cc9b5a4a4c3
PageCount 9
ParticipantIDs ieee_primary_9711376
PublicationCentury 2000
PublicationDate 2021-Oct.
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-Oct.
PublicationDecade 2020
PublicationTitle Proceedings / IEEE International Conference on Computer Vision
PublicationTitleAbbrev ICCV
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0039286
Score 2.552495
Snippet In this paper, we proposed EPP-MVSNet, a novel deep learning network for 3D reconstruction from multi-view stereo (MVS). EPP-MVSNet can accurately aggregate...
SourceID ieee
SourceType Publisher
StartPage 5712
SubjectTerms 3D from a single image and shape-from-x
3D from multiview and other sensors
Costs
Efficient training and inference methods
Image resolution
Learning systems
Memory management
Redundancy
Refining
Stereo
Three-dimensional displays
Title EPP-MVSNet: Epipolar-assembling based Depth Prediction for Multi-view Stereo
URI https://ieeexplore.ieee.org/document/9711376
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEG2AkydUMH6nB4926W63bOsVIWiEkCCEG-nHbCRG2Ohy8dfb7i4YjQdvmx62zby0b6Yzb4rQjUojlhqqiZWhJbFWgmhQCQm5SjVIzqC4yh6Nu8NZ_Ljgixq63WthAKAoPoPAfxa5fLsxW39V1pFJGLoNUUd1F7iVWq3dqetoXnQraVxIZeeh15vHQkZeaxWFge94KX48oFLwx6CJRruZy7KR12Cb68B8_mrK-N-lHaL2t1IPT_YcdIRqsD5Gzcq1xNXG_Wihp_5kQkbz6RjyO9zPVpmPaIlznOFNe0E69mxm8T1k-Yv7oc_eeMSwc2lxodElPoWApw4F2LTRbNB_7g1J9ZACWUWU5UTHDCC0oTCUpSxWxgORpFa7-Mg6F5GDkFyKBGikOGdKGEf63BipuYpVbNgJaqw3azhFWDqjGsYpVczEaWKUtqmmxk0jmNUMzlDLG2eZlb0ylpVdzv8evkAHHp6yOO4SNfL3LVw5ks_1dYHuF-xgqDs
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4QD3pCBePbHjxa2G63bOsVIaBASHiEG-ljNhIjEF0u_nrbZcFoPHhremib-dJ-0858U4TuVBKyxASaWEktibQSRIOKCeUq0SA5g-wpu9evt8fR05RPC-h-p4UBgCz5DKq-mcXy7dKs_VNZTcaUug2xh_Yd73O6UWttz11H9KKei-NoIGudRmMSCRl6tVVIq77mpfjxhUrGIK0S6m3n3iSOvFbXqa6az19lGf-7uCNU-dbq4cGOhY5RARYnqJQ7lzjfuh9l1G0OBqQ3GfYhfcDN1Xzl77TEuc7wpr0kHXs-s_gRVumLG9DHbzxm2Dm1OFPpEh9EwEOHAywraNxqjhptkn-lQOZhwFKiIwZALRUmYAmLlPFQxInV7oZknZPIQUguRQxBqDhnShhH-9wYqbmKVGTYKSoulgs4Q1g6oxrGg0AxEyWxUdomOjBuGsGsZnCOyt44s9WmWsYst8vF39236KA96nVn3U7_-RIdeqg2qXJXqJi-r-HaUX6qbzKkvwDkf6uE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Conference+on+Computer+Vision&rft.atitle=EPP-MVSNet%3A+Epipolar-assembling+based+Depth+Prediction+for+Multi-view+Stereo&rft.au=Ma%2C+Xinjun&rft.au=Gong%2C+Yue&rft.au=Wang%2C+Qirui&rft.au=Huang%2C+Jingwei&rft.date=2021-10-01&rft.pub=IEEE&rft.eissn=2380-7504&rft.spage=5712&rft.epage=5720&rft_id=info:doi/10.1109%2FICCV48922.2021.00568&rft.externalDocID=9711376