EPP-MVSNet: Epipolar-assembling based Depth Prediction for Multi-view Stereo
In this paper, we proposed EPP-MVSNet, a novel deep learning network for 3D reconstruction from multi-view stereo (MVS). EPP-MVSNet can accurately aggregate features at high resolution to a limited cost volume with an optimal depth range, thus, leads to effective and efficient 3D construction. Disti...
Saved in:
Published in | Proceedings / IEEE International Conference on Computer Vision pp. 5712 - 5720 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we proposed EPP-MVSNet, a novel deep learning network for 3D reconstruction from multi-view stereo (MVS). EPP-MVSNet can accurately aggregate features at high resolution to a limited cost volume with an optimal depth range, thus, leads to effective and efficient 3D construction. Distinct from existing works which measure feature cost at discrete positions which affects the 3D reconstruction accuracy, EPP-MVSNet introduces an epipolar-assembling-based kernel that operates on adaptive intervals along epipolar lines for making full use of the image resolution. Further, we introduce an entropy-based refining strategy where the cost volume describes the space geometry with the little redundancy. Moreover, we design a light-weighted network with Pseudo-3D convolutions integrated to achieve high accuracy and efficiency. We have conducted extensive experiments on challenging datasets Tanks & Temples(TNT), ETH3D and DTU. As a result, we achieve promising results on all datasets and the highest F-Score on the online TNT intermediate benchmark. Code is available at https://gitee.com/mindspore/mindspore/tree/master/model_zoo/research/cv/eppmvsnet. |
---|---|
AbstractList | In this paper, we proposed EPP-MVSNet, a novel deep learning network for 3D reconstruction from multi-view stereo (MVS). EPP-MVSNet can accurately aggregate features at high resolution to a limited cost volume with an optimal depth range, thus, leads to effective and efficient 3D construction. Distinct from existing works which measure feature cost at discrete positions which affects the 3D reconstruction accuracy, EPP-MVSNet introduces an epipolar-assembling-based kernel that operates on adaptive intervals along epipolar lines for making full use of the image resolution. Further, we introduce an entropy-based refining strategy where the cost volume describes the space geometry with the little redundancy. Moreover, we design a light-weighted network with Pseudo-3D convolutions integrated to achieve high accuracy and efficiency. We have conducted extensive experiments on challenging datasets Tanks & Temples(TNT), ETH3D and DTU. As a result, we achieve promising results on all datasets and the highest F-Score on the online TNT intermediate benchmark. Code is available at https://gitee.com/mindspore/mindspore/tree/master/model_zoo/research/cv/eppmvsnet. |
Author | Ma, Xinjun Gong, Yue Wang, Qirui Yu, Fan Huang, Jingwei Chen, Lei |
Author_xml | – sequence: 1 givenname: Xinjun surname: Ma fullname: Ma, Xinjun email: maxinjun1@huawei.com organization: Huawei Technologies,Distributed and Parallel Software Lab – sequence: 2 givenname: Yue surname: Gong fullname: Gong, Yue email: gongyue1@huawei.com organization: Huawei Technologies,Distributed and Parallel Software Lab – sequence: 3 givenname: Qirui surname: Wang fullname: Wang, Qirui email: wangqirui1@huawei.com organization: Huawei Technologies,Distributed and Parallel Software Lab – sequence: 4 givenname: Jingwei surname: Huang fullname: Huang, Jingwei email: huangjingwei6@huawei.com organization: Huawei Technologies,Distributed and Parallel Software Lab – sequence: 5 givenname: Lei surname: Chen fullname: Chen, Lei email: leichen@cse.ust.hk organization: Hong Kong University of Science and Technology,Department of Computer Science and Engineering – sequence: 6 givenname: Fan surname: Yu fullname: Yu, Fan email: fan.yu@huawei.com organization: Huawei Technologies,Distributed and Parallel Software Lab |
BookMark | eNotzE1PgzAYAOBqNHGb-wV66B8ovv2C1pvBqUuYkkx3XUp50RoGpDCN_96Dnp7bMydnXd8hIdccEs7B3qzzfKeMFSIRIHgCoFNzQpY2MzxNtRKGC31KZkIaYJkGdUHm4_gJIK0w6YwUq7Jkm932GadbuhrC0LcuMjeOeKja0L3Tyo1Y03scpg9aRqyDn0Lf0aaPdHNsp8C-An7T7YQR-0ty3rh2xOW_C_L2sHrNn1jx8rjO7woWBMiJVUoi8pobD7KRynntmipr6gq4qsFajcZqazIE4bSWznihlPbeVtopp7xckKu_NyDifojh4OLP3macyyyVvxUfT7k |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICCV48922.2021.00568 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9781665428125 1665428120 |
EISSN | 2380-7504 |
EndPage | 5720 |
ExternalDocumentID | 9711376 |
Genre | orig-research |
GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i203t-b43ee1d18c03f34ac5afb7fdb014d0995e895987e02a553a8c2445cc9b5a4a4c3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:25:42 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-b43ee1d18c03f34ac5afb7fdb014d0995e895987e02a553a8c2445cc9b5a4a4c3 |
PageCount | 9 |
ParticipantIDs | ieee_primary_9711376 |
PublicationCentury | 2000 |
PublicationDate | 2021-Oct. |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-Oct. |
PublicationDecade | 2020 |
PublicationTitle | Proceedings / IEEE International Conference on Computer Vision |
PublicationTitleAbbrev | ICCV |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0039286 |
Score | 2.552495 |
Snippet | In this paper, we proposed EPP-MVSNet, a novel deep learning network for 3D reconstruction from multi-view stereo (MVS). EPP-MVSNet can accurately aggregate... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 5712 |
SubjectTerms | 3D from a single image and shape-from-x 3D from multiview and other sensors Costs Efficient training and inference methods Image resolution Learning systems Memory management Redundancy Refining Stereo Three-dimensional displays |
Title | EPP-MVSNet: Epipolar-assembling based Depth Prediction for Multi-view Stereo |
URI | https://ieeexplore.ieee.org/document/9711376 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEG2AkydUMH6nB4926W63bOsVIWiEkCCEG-nHbCRG2Ohy8dfb7i4YjQdvmx62zby0b6Yzb4rQjUojlhqqiZWhJbFWgmhQCQm5SjVIzqC4yh6Nu8NZ_Ljgixq63WthAKAoPoPAfxa5fLsxW39V1pFJGLoNUUd1F7iVWq3dqetoXnQraVxIZeeh15vHQkZeaxWFge94KX48oFLwx6CJRruZy7KR12Cb68B8_mrK-N-lHaL2t1IPT_YcdIRqsD5Gzcq1xNXG_Wihp_5kQkbz6RjyO9zPVpmPaIlznOFNe0E69mxm8T1k-Yv7oc_eeMSwc2lxodElPoWApw4F2LTRbNB_7g1J9ZACWUWU5UTHDCC0oTCUpSxWxgORpFa7-Mg6F5GDkFyKBGikOGdKGEf63BipuYpVbNgJaqw3azhFWDqjGsYpVczEaWKUtqmmxk0jmNUMzlDLG2eZlb0ylpVdzv8evkAHHp6yOO4SNfL3LVw5ks_1dYHuF-xgqDs |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4QD3pCBePbHjxa2G63bOsVIaBASHiEG-ljNhIjEF0u_nrbZcFoPHhremib-dJ-0858U4TuVBKyxASaWEktibQSRIOKCeUq0SA5g-wpu9evt8fR05RPC-h-p4UBgCz5DKq-mcXy7dKs_VNZTcaUug2xh_Yd73O6UWttz11H9KKei-NoIGudRmMSCRl6tVVIq77mpfjxhUrGIK0S6m3n3iSOvFbXqa6az19lGf-7uCNU-dbq4cGOhY5RARYnqJQ7lzjfuh9l1G0OBqQ3GfYhfcDN1Xzl77TEuc7wpr0kHXs-s_gRVumLG9DHbzxm2Dm1OFPpEh9EwEOHAywraNxqjhptkn-lQOZhwFKiIwZALRUmYAmLlPFQxInV7oZknZPIQUguRQxBqDhnShhH-9wYqbmKVGTYKSoulgs4Q1g6oxrGg0AxEyWxUdomOjBuGsGsZnCOyt44s9WmWsYst8vF39236KA96nVn3U7_-RIdeqg2qXJXqJi-r-HaUX6qbzKkvwDkf6uE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Conference+on+Computer+Vision&rft.atitle=EPP-MVSNet%3A+Epipolar-assembling+based+Depth+Prediction+for+Multi-view+Stereo&rft.au=Ma%2C+Xinjun&rft.au=Gong%2C+Yue&rft.au=Wang%2C+Qirui&rft.au=Huang%2C+Jingwei&rft.date=2021-10-01&rft.pub=IEEE&rft.eissn=2380-7504&rft.spage=5712&rft.epage=5720&rft_id=info:doi/10.1109%2FICCV48922.2021.00568&rft.externalDocID=9711376 |