Calibration of the GRACE-FO Satellite Platform Magnetometers and Co-Estimation of Intrinsic Time Shift in Data

Monitoring the Earth's magnetic field is important to deepen our knowledge of Earth's interior processes. The Gravity Recovery and Climate Experiment-Follow-On (GRACE-FO) is a dual-satellite mission. Each satellite carries platform magnetometers which are used for navigation and attitude c...

Full description

Saved in:
Bibliographic Details
Published in2021 IEEE International Conference on Big Data (Big Data) pp. 5283 - 5290
Main Authors Styp-Rekowski, Kevin, Stolle, Claudia, Michaelis, Ingo, Kao, Odej
Format Conference Proceeding
LanguageEnglish
Published IEEE 15.12.2021
Subjects
Online AccessGet full text
DOI10.1109/BigData52589.2021.9671977

Cover

Loading…
Abstract Monitoring the Earth's magnetic field is important to deepen our knowledge of Earth's interior processes. The Gravity Recovery and Climate Experiment-Follow-On (GRACE-FO) is a dual-satellite mission. Each satellite carries platform magnetometers which are used for navigation and attitude control, they are subject to noise and artificial disturbance signals. Calibrating these magnetometers, thus removing artificial magnetic disturbances, will yield datasets that have a valuable impact for modeling the variability of the Earth's magnetic field with higher spatiotemporal coverage. In this work we propose a new method, modeling the calibration of the magnetic data with machine learning methods. Therefore, neural networks are employed and adjusted to specific challenges of satellite missions. One of the challenges includes an intrinsic time shift in the data of this mission. We propose an interpolation neuron that generates data while finding an arbitrary time shift in the data, thus co-estimating the model and the time shift. Additionally, sample weights have been added to counteract the partial lack of ground truth, recovering the extrapolation possibilities of the neural network at high latitudes. Evaluation experiments have shown promising results, achieving a meaningful calibration that still maintains external natural magnetic phenomena signals while lowering the overall residual by 23.8% on average compared to current state-of-the-art methods. For the two satellites the mean absolute error is 8.43nT, respectively 8.62nT on average over the mission duration. The resulting calibrated dataset will be published and made available together with this publication.
AbstractList Monitoring the Earth's magnetic field is important to deepen our knowledge of Earth's interior processes. The Gravity Recovery and Climate Experiment-Follow-On (GRACE-FO) is a dual-satellite mission. Each satellite carries platform magnetometers which are used for navigation and attitude control, they are subject to noise and artificial disturbance signals. Calibrating these magnetometers, thus removing artificial magnetic disturbances, will yield datasets that have a valuable impact for modeling the variability of the Earth's magnetic field with higher spatiotemporal coverage. In this work we propose a new method, modeling the calibration of the magnetic data with machine learning methods. Therefore, neural networks are employed and adjusted to specific challenges of satellite missions. One of the challenges includes an intrinsic time shift in the data of this mission. We propose an interpolation neuron that generates data while finding an arbitrary time shift in the data, thus co-estimating the model and the time shift. Additionally, sample weights have been added to counteract the partial lack of ground truth, recovering the extrapolation possibilities of the neural network at high latitudes. Evaluation experiments have shown promising results, achieving a meaningful calibration that still maintains external natural magnetic phenomena signals while lowering the overall residual by 23.8% on average compared to current state-of-the-art methods. For the two satellites the mean absolute error is 8.43nT, respectively 8.62nT on average over the mission duration. The resulting calibrated dataset will be published and made available together with this publication.
Author Stolle, Claudia
Kao, Odej
Michaelis, Ingo
Styp-Rekowski, Kevin
Author_xml – sequence: 1
  givenname: Kevin
  surname: Styp-Rekowski
  fullname: Styp-Rekowski, Kevin
  email: styp-rekowski@tu-berlin.de
  organization: Technical University of Berlin,Berlin,Germany,10587
– sequence: 2
  givenname: Claudia
  surname: Stolle
  fullname: Stolle, Claudia
  organization: GeoForschungsZentrum Potsdam,Potsdam,Germany,14473
– sequence: 3
  givenname: Ingo
  surname: Michaelis
  fullname: Michaelis, Ingo
  organization: GeoForschungsZentrum Potsdam,Potsdam,Germany,14473
– sequence: 4
  givenname: Odej
  surname: Kao
  fullname: Kao, Odej
  organization: Technical University of Berlin,Berlin,Germany,10587
BookMark eNo9kL1OwzAYAI0EAy08AYt5gAT_Ox5LSEuloiJa5spOvrSWEhs5Xnh7QK2YbjudboauQwyA0CMlJaXEPD3744vNVjJZmZIRRkujNDVaX6EZVUoKbgiTtyjUdvAu2exjwLHH-QR49bGom2K5xTubYRh8Bvw-2NzHNOI3ewyQ4wgZ0oRt6HAdi2bKfvxXrENOPky-xXs_At6dfJ-xD_iv5w7d9HaY4P7COfpcNvv6tdhsV-t6sSk8IzwXjgG3rqJWcuN63glinOOi0sJKQagj3IE2jDLWM8U1IVyoVrVAeUeEMYzP0cPZ6wHg8JV-89L34bKA_wBB5VbU
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BigData52589.2021.9671977
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665439025
9781665439022
EndPage 5290
ExternalDocumentID 9671977
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-b2e3ab81a539bf3d409bb34874a5401b03be792122f263700346c6ce13d049923
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:39 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-b2e3ab81a539bf3d409bb34874a5401b03be792122f263700346c6ce13d049923
PageCount 8
ParticipantIDs ieee_primary_9671977
PublicationCentury 2000
PublicationDate 2021-Dec.-15
PublicationDateYYYYMMDD 2021-12-15
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-Dec.-15
  day: 15
PublicationDecade 2020
PublicationTitle 2021 IEEE International Conference on Big Data (Big Data)
PublicationTitleAbbrev Big Data
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8034045
Snippet Monitoring the Earth's magnetic field is important to deepen our knowledge of Earth's interior processes. The Gravity Recovery and Climate Experiment-Follow-On...
SourceID ieee
SourceType Publisher
StartPage 5283
SubjectTerms Big Data
Calibration
Data models
Magnetic domains
Magnetometers
Satellite navigation systems
Satellites
Title Calibration of the GRACE-FO Satellite Platform Magnetometers and Co-Estimation of Intrinsic Time Shift in Data
URI https://ieeexplore.ieee.org/document/9671977
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA3bDuJJZRN_E8Gj6domaZujzs0pTMU52G0kTTqLLpWZXfzrTdo6UTx4K6W_-B7lvdd-7wsAZyqjNM0YQXGaMEQIk8ixILJMo3AirEaQziiO7qLhhNxO6bQBztdZGKVU2XymPLdZ_suXRbpyn8q6LIoDq1eaoGmNW5XV2gCn9djM7mU-v-KG05AmLoESBl59_I-FU0reGGyB0dcdq3aRF29lhJd-_BrG-N9H2gad74QefFhzzw5oKN0G2gWtRAUpLDJotR28frzo9dHgHo55OXvT2PNeuXFSFY74XCtTLFxHzDvkWsJegfr2nV-sL3GjzTLXFknosiJw_JxnBuYauhJ0wGTQf-oNUb2eAspDHxskQoW5SAJOMRMZltbaCYGtYyHcYhIIHwsVM8tlYRZGOHaja6I0SlWApTNGId4FLV1otQcgJUQmqR8Ln2WEp5IRSbCF1cqtiKvA3wdtV6vZWzUyY1aX6eDv3Ydg0-HlukQCegRaZrlSx5brjTgpQf4EGAGp9g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwGG0QE_WkBoy_rYlHC9va7sdREQQFNAIJN9KuHS5KZ7Bc_OttN8RoPHhblnRbvpflvW_73isAFzKhNE4igoI4jBAhkUCWBZFhGolDbjSCsI1ir--3R-RuTMclcLnywkgp8-EzWbOH-b98kcUL-6msHvmBa_TKGlin1oxbuLU2wPkyOLN-nU5vmGbUo6H1oHhubbnix9YpOXO0tkHv657FwMhLbaF5Lf74Fcf434faAdVvjx58XLHPLihJVQHKWq14ASrMEmjUHbx9umo0UesBDlievqnNulemrViFPTZVUmczOxPzDpkSsJGhpnnrZ6tLdJSep8pgCa1bBA6e00TDVEFbgioYtZrDRhstd1RAqedgjbgnMeOhyyiOeIKFae44x6ZnIcyg4nIHcxlEhs28xPNxYMNr_NiPpYuFbY08vAfKKlNyH0BKiAhjJ-BOlBAWi4gIgg2wRnD5TLrOAajYWk3eitCMybJMh3-fPgOb7WGvO-l2-vdHYMtiZ2dGXHoMynq-kCeG-TU_zQH_BCKZrT4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+International+Conference+on+Big+Data+%28Big+Data%29&rft.atitle=Calibration+of+the+GRACE-FO+Satellite+Platform+Magnetometers+and+Co-Estimation+of+Intrinsic+Time+Shift+in+Data&rft.au=Styp-Rekowski%2C+Kevin&rft.au=Stolle%2C+Claudia&rft.au=Michaelis%2C+Ingo&rft.au=Kao%2C+Odej&rft.date=2021-12-15&rft.pub=IEEE&rft.spage=5283&rft.epage=5290&rft_id=info:doi/10.1109%2FBigData52589.2021.9671977&rft.externalDocID=9671977