Multi-Task fMRI Data Fusion Using IVA and PARAFAC2

Data fusion-the joint analysis of multiple datasets-through coupled factorizations has the promise to enable enhanced knowledge discovery, and hence is an active area. Various formulations of coupled matrix factorizations have been proposed, each with its own modeling assumptions. In this paper, we...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) pp. 1466 - 1470
Main Authors Lehmann, Isabell, Acar, Evrim, Hasija, Tanuj, Akhonda, M.A.B.S., Calhoun, Vince D., Schreier, Peter J., Adali, Tulay
Format Conference Proceeding
LanguageEnglish
Published IEEE 23.05.2022
Subjects
Online AccessGet full text
ISSN2379-190X
DOI10.1109/ICASSP43922.2022.9747662

Cover

Loading…
Abstract Data fusion-the joint analysis of multiple datasets-through coupled factorizations has the promise to enable enhanced knowledge discovery, and hence is an active area. Various formulations of coupled matrix factorizations have been proposed, each with its own modeling assumptions. In this paper, we study two such methods, namely Independent Vector Analysis (IVA), i.e., extension of Independent Component Analysis (ICA) to multiple datasets, and PARAFAC2, a tensor factorization approach. We demonstrate the modeling assumptions of IVA and PARAFAC2 using simulations, revealing that both methods can accurately capture the latent components, albeit with certain differences in capturing the corresponding subject scores. By making use of a rich multi-task functional Magnetic Resonance Imaging (fMRI) dataset, we show how the two methods can be used for achieving two important goals at once, namely capturing group differences between patients with schizophrenia and healthy controls with interpretable components, as well as understanding the relationship across multiple tasks. This is achieved through the definition of source component vectors across datasets.
AbstractList Data fusion-the joint analysis of multiple datasets-through coupled factorizations has the promise to enable enhanced knowledge discovery, and hence is an active area. Various formulations of coupled matrix factorizations have been proposed, each with its own modeling assumptions. In this paper, we study two such methods, namely Independent Vector Analysis (IVA), i.e., extension of Independent Component Analysis (ICA) to multiple datasets, and PARAFAC2, a tensor factorization approach. We demonstrate the modeling assumptions of IVA and PARAFAC2 using simulations, revealing that both methods can accurately capture the latent components, albeit with certain differences in capturing the corresponding subject scores. By making use of a rich multi-task functional Magnetic Resonance Imaging (fMRI) dataset, we show how the two methods can be used for achieving two important goals at once, namely capturing group differences between patients with schizophrenia and healthy controls with interpretable components, as well as understanding the relationship across multiple tasks. This is achieved through the definition of source component vectors across datasets.
Author Schreier, Peter J.
Acar, Evrim
Lehmann, Isabell
Adali, Tulay
Hasija, Tanuj
Akhonda, M.A.B.S.
Calhoun, Vince D.
Author_xml – sequence: 1
  givenname: Isabell
  surname: Lehmann
  fullname: Lehmann, Isabell
  organization: Paderborn University,Signal and System Theory Group,Germany
– sequence: 2
  givenname: Evrim
  surname: Acar
  fullname: Acar, Evrim
  organization: Simula Metropolitan Center for Digital Engineering,Oslo,Norway
– sequence: 3
  givenname: Tanuj
  surname: Hasija
  fullname: Hasija, Tanuj
  organization: Paderborn University,Signal and System Theory Group,Germany
– sequence: 4
  givenname: M.A.B.S.
  surname: Akhonda
  fullname: Akhonda, M.A.B.S.
  organization: University of Maryland,Dept.of CSEE,Baltimore County
– sequence: 5
  givenname: Vince D.
  surname: Calhoun
  fullname: Calhoun, Vince D.
  organization: Emory University,Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech,Atlanta,GA
– sequence: 6
  givenname: Peter J.
  surname: Schreier
  fullname: Schreier, Peter J.
  organization: Paderborn University,Signal and System Theory Group,Germany
– sequence: 7
  givenname: Tulay
  surname: Adali
  fullname: Adali, Tulay
  organization: University of Maryland,Dept.of CSEE,Baltimore County
BookMark eNotj1FLwzAUhaMouE5_gS_5A50396ZJ81iqm4UNxzrFt5E2qURnJ0v34L-34OBwztvHdxJ21R96zxgXMBMCzENVFnW9lmQQZwhjGS21UnjBEqFUJmGMumQTJG1SYeD9hiUxfgJArmU-Ybg67YeQbm384t1qU_FHO1g-P8Vw6PlrDP0Hr94KbnvH18WmmBcl3rLrzu6jvzvvlNXzp235nC5fFqPOMg0INKQNSIueXIuaPLQuyxoYBa2yHRE0AnUD5ISW2FqpGpErQ-BcK3QOmacpu_-nBu_97ucYvu3xd3d-R3_w2kNz
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP43922.2022.9747662
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1665405406
9781665405409
EISSN 2379-190X
EndPage 1470
ExternalDocumentID 9747662
Genre orig-research
GroupedDBID 23M
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-b04a2e3dc273e0cd55b0022a6af330b127b03d1742ca46b186930ddc17805e3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:25:02 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-b04a2e3dc273e0cd55b0022a6af330b127b03d1742ca46b186930ddc17805e3
PageCount 5
ParticipantIDs ieee_primary_9747662
PublicationCentury 2000
PublicationDate 2022-May-23
PublicationDateYYYYMMDD 2022-05-23
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-May-23
  day: 23
PublicationDecade 2020
PublicationTitle Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998)
PublicationTitleAbbrev ICASSP
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008748
Score 2.2785568
Snippet Data fusion-the joint analysis of multiple datasets-through coupled factorizations has the promise to enable enhanced knowledge discovery, and hence is an...
SourceID ieee
SourceType Publisher
StartPage 1466
SubjectTerms data fusion
Functional magnetic resonance imaging
Independent component analysis
independent vector analysis
Knowledge discovery
multi-task fMRI
Multitasking
PARAFAC2
Reliability
Signal processing
tensor decompositions
Tensors
Title Multi-Task fMRI Data Fusion Using IVA and PARAFAC2
URI https://ieeexplore.ieee.org/document/9747662
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LawIxEB6sp_bSh5a-yaHHRmOS3XWPi-2iBYuoLd4km8xCEVZpdy_99U3iow966CWEQJ4D802S-WYAbjuaMRPJnCIPBJXcII1VIClDiUHEdYSRYyMPn8L-s3ycBbMa3O24MIjonc-w5ar-L98sdeWeytrO9g2dwt2zF7c1V2undbuR7G49dVjcHvSSyWRk0ZY7tpUtNn1_JFHxGJIewnA7-9p1ZNGqyqylP34FZvzv8o6g-cXWI6MdDh1DDYsTOPgWaLAB3PNs6VS9L0g-HA_IvSoVSSv3VEa81wAZvCREFYaMknGSJj3ehEn6MO316SZbAn3lTJQ0Y1JxFEZbgwSZNkHgAVqFKheCZR0eZUwYewHhWskwc6moBDNGd1xWAxSnUC-WBZ4BEVraUYSMrSngIE6xPBRW0NaWY7nJ8Rwabu_z1Tocxnyz7Yu_my9h352_-3Dn4grq5VuF1xbHy-zGC_AT3kiZqQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5FD-rFRyu-zcGjabNJdrc9LtWlq91S2iq9lWwyC1LYiu5e_PUm6cMHHryEEMiLgXyTmflmELrxFKU6FDkB5nMimAbSkb4gFAT4IVMhhJaNnA6C3pN4mPrTGrrdcGEAwAWfQdN2nS9fL1RlTWUtq_sG9sHdNrjve0u21ubdbYeivY7VoZ1W0o3G46HBW2b5VqZZzf5RRsWhSLyP0vX-y-CRebMqs6b6-JWa8b8HPECNL74eHm6Q6BDVoDhCe99SDdYRc0xbMpHvc5ynowTfyVLiuLLGMuziBnDyHGFZaDyMRlEcdVkDjeP7SbdHVvUSyAujvCQZFZIB18qoJECV9n0H0TKQOec081iYUa7NF4QpKYLMFqPiVGvl2boGwI_RVrEo4ARhroRZhYuOUQYsyEmaB9yI2mhzNNc5nKK6vfvsdZkQY7a69tnfw9dopzdJ-7N-Mng8R7tWFtb9zvgF2irfKrg0qF5mV06YnxqonPI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=Multi-Task+fMRI+Data+Fusion+Using+IVA+and+PARAFAC2&rft.au=Lehmann%2C+Isabell&rft.au=Acar%2C+Evrim&rft.au=Hasija%2C+Tanuj&rft.au=Akhonda%2C+M.A.B.S.&rft.date=2022-05-23&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=1466&rft.epage=1470&rft_id=info:doi/10.1109%2FICASSP43922.2022.9747662&rft.externalDocID=9747662