Iterative shaping of optical potentials for one-dimensional Bose-Einstein condensates

The ability to manipulate clouds of ultra-cold atoms is crucial for modern experiments on quantum many-body systems and quantum thermodynamics as well as future metrological applications of Bose-Einstein condensate. While optical manipulation offers almost arbitrary flexibility, the precise control...

Full description

Saved in:
Bibliographic Details
Published in2022 IEEE 61st Conference on Decision and Control (CDC) pp. 5801 - 5806
Main Authors Deutschmann-Olek, Andreas, Tajik, Mohammadamin, Calzavara, Martino, Schmiedmayer, Jorg, Calarco, Tommaso, Kugi, Andreas
Format Conference Proceeding
LanguageEnglish
Published IEEE 06.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The ability to manipulate clouds of ultra-cold atoms is crucial for modern experiments on quantum many-body systems and quantum thermodynamics as well as future metrological applications of Bose-Einstein condensate. While optical manipulation offers almost arbitrary flexibility, the precise control of the resulting dipole potentials and the mitigation of unwanted disturbances is quite involved and only heuristic algorithms with rather slow convergence rates are available up to now. This paper thus suggests the application of iterative learning control (ILC) methods to generate fine-tuned effective potentials in the presence of uncertainties and external disturbances. Therefore, the given problem is reformulated to obtain a one-dimensional tracking problem by using a quasicontinuous input mapping which can be treated by established ILC methods. Finally, the performance of the proposed concept is illustrated in a simulation scenario.
ISSN:2576-2370
DOI:10.1109/CDC51059.2022.9993271