Auditing saliency cropping algorithms
In this paper, we audit saliency cropping algorithms used by Twitter, Google and Apple to investigate issues pertaining to the male-gaze cropping phenomenon as well as race-gender biases that emerge in post-cropping survival ratios of face-images constituting 3 × 1 grid images. In doing so, we prese...
Saved in:
Published in | Proceedings / IEEE Workshop on Applications of Computer Vision pp. 1515 - 1523 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we audit saliency cropping algorithms used by Twitter, Google and Apple to investigate issues pertaining to the male-gaze cropping phenomenon as well as race-gender biases that emerge in post-cropping survival ratios of face-images constituting 3 × 1 grid images. In doing so, we present the first formal empirical study which suggests that the worry of a male-gaze-like image cropping phenomenon on Twitter is not at all far-fetched and it does occur with worryingly high prevalence rates in real-world full-body single-female-subject images shot with logo-littered backdrops. We uncover that while all three saliency cropping frameworks considered in this paper do exhibit acute racial and gender biases, Twitter's saliency cropping framework uniquely elicits high male-gaze cropping prevalence rates. In order to facilitate reproducing the results presented here, we are open-sourcing both the code and the datasets that we curated at shorturl.at/iuzK9. We hope the computer vision community and saliency cropping researchers will build on the results presented here and extend these investigations to similar frameworks deployed in the real world by other companies such as Microsoft and Facebook. |
---|---|
AbstractList | In this paper, we audit saliency cropping algorithms used by Twitter, Google and Apple to investigate issues pertaining to the male-gaze cropping phenomenon as well as race-gender biases that emerge in post-cropping survival ratios of face-images constituting 3 × 1 grid images. In doing so, we present the first formal empirical study which suggests that the worry of a male-gaze-like image cropping phenomenon on Twitter is not at all far-fetched and it does occur with worryingly high prevalence rates in real-world full-body single-female-subject images shot with logo-littered backdrops. We uncover that while all three saliency cropping frameworks considered in this paper do exhibit acute racial and gender biases, Twitter's saliency cropping framework uniquely elicits high male-gaze cropping prevalence rates. In order to facilitate reproducing the results presented here, we are open-sourcing both the code and the datasets that we curated at shorturl.at/iuzK9. We hope the computer vision community and saliency cropping researchers will build on the results presented here and extend these investigations to similar frameworks deployed in the real world by other companies such as Microsoft and Facebook. |
Author | Whaley, John Birhane, Abeba Prabhu, Vinay Uday |
Author_xml | – sequence: 1 givenname: Abeba surname: Birhane fullname: Birhane, Abeba email: abeba.birhane@ucdconnect.ie organization: University College Dublin & Lero – sequence: 2 givenname: Vinay Uday surname: Prabhu fullname: Prabhu, Vinay Uday email: vinay@unify.id organization: UnifyID Labs – sequence: 3 givenname: John surname: Whaley fullname: Whaley, John email: john@unify.id organization: UnifyID Labs |
BookMark | eNotzD1PhEAQgOHVaOJx-gu0uMYSnNlhl92SEL-SS2z8KC8DDOcaDgiLxf17Y7R6k6d4E3U2jIModYOQIYK_-yird4O5cZkGrTMANO5EJWitycGjgVO10jbXqSeHFyqJ8QuAPHpaqdvyuw1LGPabyH2QoTlumnmcpl_hfj_OYfk8xEt13nEf5eq_a_X2cP9aPaXbl8fnqtymQQMtKXNNJLUj3XLeoHYMHVrujLWtOCtOF-wscQ1F07V5UWvGGo14hy0IAa3V9d83iMhumsOB5-POF2CdA_oBSJlCEA |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/WACV51458.2022.00158 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 1665409150 9781665409155 |
EISSN | 2642-9381 |
EndPage | 1523 |
ExternalDocumentID | 9706880 |
Genre | orig-research |
GrantInformation_xml | – fundername: Science Foundation Ireland funderid: 10.13039/501100001602 |
GroupedDBID | 29G 29O 6IE 6IF 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS |
ID | FETCH-LOGICAL-i203t-aab33eb832da4c128a0f16af566de86e827a863ab07cfd47b2a1b15e981d0e303 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:49:39 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-aab33eb832da4c128a0f16af566de86e827a863ab07cfd47b2a1b15e981d0e303 |
PageCount | 9 |
ParticipantIDs | ieee_primary_9706880 |
PublicationCentury | 2000 |
PublicationDate | 2022-Jan. |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-Jan. |
PublicationDecade | 2020 |
PublicationTitle | Proceedings / IEEE Workshop on Applications of Computer Vision |
PublicationTitleAbbrev | WACV |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0039193 |
Score | 2.2371125 |
Snippet | In this paper, we audit saliency cropping algorithms used by Twitter, Google and Apple to investigate issues pertaining to the male-gaze cropping phenomenon as... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1515 |
SubjectTerms | Blogs Codes Companies Computer vision Explainable AI; Fairness; Accountability; Privacy and Ethics in Vision Datasets; Evaluation and Comparison of Vision Algorithms; Deep Learning; Human-Computer Interaction; Segmentation; Grouping and Shape Internet Social networking (online) |
Title | Auditing saliency cropping algorithms |
URI | https://ieeexplore.ieee.org/document/9706880 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJ6YCLeJbGWAjrWMn_hiriqpCKmKg0K2y4wtUQIPadOHX40vSghADWxQlcuzIfs_ne_cIuQQmONVWhVJlPIytoaFRDnOmXMyo4yo1GIcc34nRJL6dJtMGud5qYQCgTD6DLl6WZ_kuT9cYKutpiRYpfoO-4zdulVZrs-py7ZlILY2LqO499QePngskmL3FsCZnhKbuPwxUSvwYtsh403KVNvLaXRe2m37-Ksr430_bI51vpV5wv8WgfdKAxQFp1dQyqCfuqk2u-qi-8I8EK0-8UW4ZoHcXiqUC8_acL-fFy_uqQybDm4fBKKwdEsI5o7wIjbGcg_Wz0pk49VBjaBYJk3mO5kAJUEwaJbixVKaZi6VlJrJRAtqzVAoevQ5Jc5Ev4IgEUtiUCgN4bBcDJEpqplTm34ksdVoekzb2evZRFcGY1R0--fv2KdnFca9iFWekWSzXcO7Ru7AX5W_7AuekmZ4 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH4heNATKhh_u4PeHHTrtnZHQiSoQDyAciPt-qZEBQPj4l9v3xhojAdvzdJma5r2-_b6vvcBXKIfcRZr6QqZcjfQirlKGsqZMoHPDJeJojhkrx91hsHdKByV4HqjhUHEPPkM69TM7_LNLFlSqKwRC7JIsT_oWxb3Q2-l1lqfuzy2XKQQx3ksbjw1W4-WDYSUv-VTVU6PbN1_WKjkCNKuQG_97lXiyGt9mel68vmrLON_P24Xat9aPedhg0J7UMLpPlQKcukUW3dRhasm6S9sF2dhqTcJLh1y7yK5lKPenmfzSfbyvqjBsH0zaHXcwiPBnfiMZ65SmnPUdl8aFSQWbBRLvUillqUZlBFKXygZcaWZSFITCO0rT3shxpanMrT4dQDl6WyKh-CISCcsUkgXdwFiKEXsS5naMZ5mJhZHUKVZjz9WZTDGxYSP_358AdudQa877t72709gh9ZgFbk4hXI2X-KZxfJMn-dL-AUfupzn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+Workshop+on+Applications+of+Computer+Vision&rft.atitle=Auditing+saliency+cropping+algorithms&rft.au=Birhane%2C+Abeba&rft.au=Prabhu%2C+Vinay+Uday&rft.au=Whaley%2C+John&rft.date=2022-01-01&rft.pub=IEEE&rft.eissn=2642-9381&rft.spage=1515&rft.epage=1523&rft_id=info:doi/10.1109%2FWACV51458.2022.00158&rft.externalDocID=9706880 |