Auditing saliency cropping algorithms

In this paper, we audit saliency cropping algorithms used by Twitter, Google and Apple to investigate issues pertaining to the male-gaze cropping phenomenon as well as race-gender biases that emerge in post-cropping survival ratios of face-images constituting 3 × 1 grid images. In doing so, we prese...

Full description

Saved in:
Bibliographic Details
Published inProceedings / IEEE Workshop on Applications of Computer Vision pp. 1515 - 1523
Main Authors Birhane, Abeba, Prabhu, Vinay Uday, Whaley, John
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we audit saliency cropping algorithms used by Twitter, Google and Apple to investigate issues pertaining to the male-gaze cropping phenomenon as well as race-gender biases that emerge in post-cropping survival ratios of face-images constituting 3 × 1 grid images. In doing so, we present the first formal empirical study which suggests that the worry of a male-gaze-like image cropping phenomenon on Twitter is not at all far-fetched and it does occur with worryingly high prevalence rates in real-world full-body single-female-subject images shot with logo-littered backdrops. We uncover that while all three saliency cropping frameworks considered in this paper do exhibit acute racial and gender biases, Twitter's saliency cropping framework uniquely elicits high male-gaze cropping prevalence rates. In order to facilitate reproducing the results presented here, we are open-sourcing both the code and the datasets that we curated at shorturl.at/iuzK9. We hope the computer vision community and saliency cropping researchers will build on the results presented here and extend these investigations to similar frameworks deployed in the real world by other companies such as Microsoft and Facebook.
AbstractList In this paper, we audit saliency cropping algorithms used by Twitter, Google and Apple to investigate issues pertaining to the male-gaze cropping phenomenon as well as race-gender biases that emerge in post-cropping survival ratios of face-images constituting 3 × 1 grid images. In doing so, we present the first formal empirical study which suggests that the worry of a male-gaze-like image cropping phenomenon on Twitter is not at all far-fetched and it does occur with worryingly high prevalence rates in real-world full-body single-female-subject images shot with logo-littered backdrops. We uncover that while all three saliency cropping frameworks considered in this paper do exhibit acute racial and gender biases, Twitter's saliency cropping framework uniquely elicits high male-gaze cropping prevalence rates. In order to facilitate reproducing the results presented here, we are open-sourcing both the code and the datasets that we curated at shorturl.at/iuzK9. We hope the computer vision community and saliency cropping researchers will build on the results presented here and extend these investigations to similar frameworks deployed in the real world by other companies such as Microsoft and Facebook.
Author Whaley, John
Birhane, Abeba
Prabhu, Vinay Uday
Author_xml – sequence: 1
  givenname: Abeba
  surname: Birhane
  fullname: Birhane, Abeba
  email: abeba.birhane@ucdconnect.ie
  organization: University College Dublin & Lero
– sequence: 2
  givenname: Vinay Uday
  surname: Prabhu
  fullname: Prabhu, Vinay Uday
  email: vinay@unify.id
  organization: UnifyID Labs
– sequence: 3
  givenname: John
  surname: Whaley
  fullname: Whaley, John
  email: john@unify.id
  organization: UnifyID Labs
BookMark eNotzD1PhEAQgOHVaOJx-gu0uMYSnNlhl92SEL-SS2z8KC8DDOcaDgiLxf17Y7R6k6d4E3U2jIModYOQIYK_-yird4O5cZkGrTMANO5EJWitycGjgVO10jbXqSeHFyqJ8QuAPHpaqdvyuw1LGPabyH2QoTlumnmcpl_hfj_OYfk8xEt13nEf5eq_a_X2cP9aPaXbl8fnqtymQQMtKXNNJLUj3XLeoHYMHVrujLWtOCtOF-wscQ1F07V5UWvGGo14hy0IAa3V9d83iMhumsOB5-POF2CdA_oBSJlCEA
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WACV51458.2022.00158
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 1665409150
9781665409155
EISSN 2642-9381
EndPage 1523
ExternalDocumentID 9706880
Genre orig-research
GrantInformation_xml – fundername: Science Foundation Ireland
  funderid: 10.13039/501100001602
GroupedDBID 29G
29O
6IE
6IF
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i203t-aab33eb832da4c128a0f16af566de86e827a863ab07cfd47b2a1b15e981d0e303
IEDL.DBID RIE
IngestDate Wed Aug 27 02:49:39 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-aab33eb832da4c128a0f16af566de86e827a863ab07cfd47b2a1b15e981d0e303
PageCount 9
ParticipantIDs ieee_primary_9706880
PublicationCentury 2000
PublicationDate 2022-Jan.
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-Jan.
PublicationDecade 2020
PublicationTitle Proceedings / IEEE Workshop on Applications of Computer Vision
PublicationTitleAbbrev WACV
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0039193
Score 2.2371125
Snippet In this paper, we audit saliency cropping algorithms used by Twitter, Google and Apple to investigate issues pertaining to the male-gaze cropping phenomenon as...
SourceID ieee
SourceType Publisher
StartPage 1515
SubjectTerms Blogs
Codes
Companies
Computer vision
Explainable AI; Fairness; Accountability; Privacy and Ethics in Vision Datasets; Evaluation and Comparison of Vision Algorithms; Deep Learning; Human-Computer Interaction; Segmentation; Grouping and Shape
Internet
Social networking (online)
Title Auditing saliency cropping algorithms
URI https://ieeexplore.ieee.org/document/9706880
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJ6YCLeJbGWAjrWMn_hiriqpCKmKg0K2y4wtUQIPadOHX40vSghADWxQlcuzIfs_ne_cIuQQmONVWhVJlPIytoaFRDnOmXMyo4yo1GIcc34nRJL6dJtMGud5qYQCgTD6DLl6WZ_kuT9cYKutpiRYpfoO-4zdulVZrs-py7ZlILY2LqO499QePngskmL3FsCZnhKbuPwxUSvwYtsh403KVNvLaXRe2m37-Ksr430_bI51vpV5wv8WgfdKAxQFp1dQyqCfuqk2u-qi-8I8EK0-8UW4ZoHcXiqUC8_acL-fFy_uqQybDm4fBKKwdEsI5o7wIjbGcg_Wz0pk49VBjaBYJk3mO5kAJUEwaJbixVKaZi6VlJrJRAtqzVAoevQ5Jc5Ev4IgEUtiUCgN4bBcDJEpqplTm34ksdVoekzb2evZRFcGY1R0--fv2KdnFca9iFWekWSzXcO7Ru7AX5W_7AuekmZ4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH4heNATKhh_u4PeHHTrtnZHQiSoQDyAciPt-qZEBQPj4l9v3xhojAdvzdJma5r2-_b6vvcBXKIfcRZr6QqZcjfQirlKGsqZMoHPDJeJojhkrx91hsHdKByV4HqjhUHEPPkM69TM7_LNLFlSqKwRC7JIsT_oWxb3Q2-l1lqfuzy2XKQQx3ksbjw1W4-WDYSUv-VTVU6PbN1_WKjkCNKuQG_97lXiyGt9mel68vmrLON_P24Xat9aPedhg0J7UMLpPlQKcukUW3dRhasm6S9sF2dhqTcJLh1y7yK5lKPenmfzSfbyvqjBsH0zaHXcwiPBnfiMZ65SmnPUdl8aFSQWbBRLvUillqUZlBFKXygZcaWZSFITCO0rT3shxpanMrT4dQDl6WyKh-CISCcsUkgXdwFiKEXsS5naMZ5mJhZHUKVZjz9WZTDGxYSP_358AdudQa877t72709gh9ZgFbk4hXI2X-KZxfJMn-dL-AUfupzn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+Workshop+on+Applications+of+Computer+Vision&rft.atitle=Auditing+saliency+cropping+algorithms&rft.au=Birhane%2C+Abeba&rft.au=Prabhu%2C+Vinay+Uday&rft.au=Whaley%2C+John&rft.date=2022-01-01&rft.pub=IEEE&rft.eissn=2642-9381&rft.spage=1515&rft.epage=1523&rft_id=info:doi/10.1109%2FWACV51458.2022.00158&rft.externalDocID=9706880