On Data Classification Efficiency Based on a Trade-off Relation between Mutual Information and Error Probability

We propose a data classification model which yields an average mutual information between a set of objects and a set of class-label decisions as a function of error probability. Optimization of the model consists in minimization of the average mutual information by conditional distributions for the...

Full description

Saved in:
Bibliographic Details
Published in2020 International Conference on Information Technology and Nanotechnology (ITNT) pp. 1 - 6
Main Authors Lange, Mikhail, Lange, Andrey, Paramonov, Semion
Format Conference Proceeding
LanguageEnglish
Published IEEE 26.05.2020
Subjects
Online AccessGet full text
DOI10.1109/ITNT49337.2020.9253225

Cover

Abstract We propose a data classification model which yields an average mutual information between a set of objects and a set of class-label decisions as a function of error probability. Optimization of the model consists in minimization of the average mutual information by conditional distributions for the decisions subject to a given constraint on the average error probability. It is equivalent to calculating the rate-distortion function in a scheme of coding the source class labels with a given fidelity when a set of the class labels and a set of the objects are connected by an observation channel with known class-conditional probability distributions. Given set of the objects and known observation channel, a lower bound to the rate-distortion function is calculated. This bound is independent on a decision algorithm and yields a potentially achievable error probability subject to a fixed value of the average mutual information. The obtained bound is useful for evaluating an error probability redundancy of any decision algorithm with given discriminant functions.
AbstractList We propose a data classification model which yields an average mutual information between a set of objects and a set of class-label decisions as a function of error probability. Optimization of the model consists in minimization of the average mutual information by conditional distributions for the decisions subject to a given constraint on the average error probability. It is equivalent to calculating the rate-distortion function in a scheme of coding the source class labels with a given fidelity when a set of the class labels and a set of the objects are connected by an observation channel with known class-conditional probability distributions. Given set of the objects and known observation channel, a lower bound to the rate-distortion function is calculated. This bound is independent on a decision algorithm and yields a potentially achievable error probability subject to a fixed value of the average mutual information. The obtained bound is useful for evaluating an error probability redundancy of any decision algorithm with given discriminant functions.
Author Lange, Andrey
Paramonov, Semion
Lange, Mikhail
Author_xml – sequence: 1
  givenname: Mikhail
  surname: Lange
  fullname: Lange, Mikhail
  email: lange_mm@ccas.ru
  organization: Federal Research Center "Computer Science and Control" of RAS,Moscow,Russia
– sequence: 2
  givenname: Andrey
  surname: Lange
  fullname: Lange, Andrey
  email: lange_am@mail.ru
  organization: Federal Research Center "Computer Science and Control" of RAS,Moscow,Russia
– sequence: 3
  givenname: Semion
  surname: Paramonov
  fullname: Paramonov, Semion
  email: psvpobox@gmail.com
  organization: Federal Research Center "Computer Science and Control" of RAS,Moscow,Russia
BookMark eNotUM1KxDAYjKAHXfcJBMkLtOanbZqj1qqF1RWp5-VL-gUC3XRJu0jf3kL3MMwwM8xh7sh1GAIS8shZyjnTT0371WZaSpUKJliqRS6FyK_IVquSK7GAZZzfktM-0FeYgFY9jKN33sLkh0Brt0iPwc70BUbs6OIBbSN0mAzO0R_s16LB6Q8x0M_zdIaeNsEN8bhGEDpaxzhE-h0HA8b3fprvyY2DfsTthTfk961uq49kt39vqudd4gWTUwKg8rJwIkedS1WwQllwGpRhAqUpAYUFkzll0HU865iwnbRcu5wxhVwXckMe1l2PiIdT9EeI8-Hyg_wHIA1ZTg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ITNT49337.2020.9253225
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728170411
1728170419
EndPage 6
ExternalDocumentID 9253225
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-aa7586f25e95376067caf9a7b02e3b8ae2cab4f7befd14d02cd3c19f5007e1963
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:56 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-aa7586f25e95376067caf9a7b02e3b8ae2cab4f7befd14d02cd3c19f5007e1963
PageCount 6
ParticipantIDs ieee_primary_9253225
PublicationCentury 2000
PublicationDate 2020-May-26
PublicationDateYYYYMMDD 2020-05-26
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-May-26
  day: 26
PublicationDecade 2020
PublicationTitle 2020 International Conference on Information Technology and Nanotechnology (ITNT)
PublicationTitleAbbrev ITNT
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7324854
Snippet We propose a data classification model which yields an average mutual information between a set of objects and a set of class-label decisions as a function of...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Data classification
decision algorithm
discriminant functions
error probability
error probability redundancy
lower bound
mutual information
Title On Data Classification Efficiency Based on a Trade-off Relation between Mutual Information and Error Probability
URI https://ieeexplore.ieee.org/document/9253225
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkyAWsRbHhhx6jhPr0CrgtTC0ErdKj_OEkJKqigZyq_HdtIiEANb5FhxdHby3dnfd4fQXShSRlUYE0V1RmIBKeF5FJLIZJBkPBdUOqHwfJHOVvHLOln30P1BCwMAnnwGgbv0Z_m6VI3bKhtzlrj110d9u8xarVYn-g0pHz8vF8vYxueZjfoYDbrOP6qmeNCYHqP5friWK_IRNLUM1OevTIz_fZ8TNPqW5-G3A_Ccoh4UQ7R9LfCTqAX2ZS4dAcjbHE98jggnsMQPFrE0tm0CW4jSQEpj8J4NhzvGFp43TlKCO52SvyUKjSdVVVZuWNlm9t6N0Go6WT7OSFdOgbwzGtVECBsbpIYlwF0OFwtTShguMkkZRDIXwJSQsckkGB3GmjKlIxVyk1g3AtyHeoYGRVnAOcJRqqxfoE1k_wgxD0FS63hRmdvOqX04v0BDZ63Nts2YsekMdfl38xU6cjPmzuRZeo0GddXAjYX6Wt76Of4CefCrLA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAC1CLeeGAkqeM4D69AqxaawpBK3So_JYSUVFEywK_HdkIRiIEtciw7Osf57uLvuwPgJmAxRiIgnkAy8QhTsUfTMPBCnagooSlD3AqFs0U8XZLHVbTqgdutFkYp5chnyreX7ixflqKxv8pGFEf2_dsBuwb3SdSqtTrZb4DoaJYvcmIi9MTEfRj5XfcfdVMcbEwOQPY1YcsWefObmvvi41cuxv8-0SEYfgv04MsWeo5ATxUDsHku4AOrGXSFLi0FyFkdjl2WCCuxhHcGsyQ0bQwakJLKK7WGX3w42HG2YNZYUQnslEruFiskHFdVWdlpeZvb-30IlpNxfj_1uoIK3itGYe0xZqKDWONIUZvFxQCVYJqyhCOsQp4yhQXjRCdcaRkQibCQoQiojowjoexWPQb9oizUCYBhLIxnIHVovgmEBooj43ohnprOsRmcnoKBtdZ60-bMWHeGOvu7-RrsTfNsvp7PFk_nYN-unj2hx_EF6NdVoy4N8Nf8yq33J5zIrnk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+International+Conference+on+Information+Technology+and+Nanotechnology+%28ITNT%29&rft.atitle=On+Data+Classification+Efficiency+Based+on+a+Trade-off+Relation+between+Mutual+Information+and+Error+Probability&rft.au=Lange%2C+Mikhail&rft.au=Lange%2C+Andrey&rft.au=Paramonov%2C+Semion&rft.date=2020-05-26&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FITNT49337.2020.9253225&rft.externalDocID=9253225