Universal Efficient Variable-Rate Neural Image Compression

Recently, Learning-based image compression has reached comparable performance with traditional image codecs(such as JPEG, BPG, WebP). However, computational complexity and rate flexibility are still two major challenges for its practical deployment. To tackle these problems, this paper proposes two...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) pp. 2025 - 2029
Main Authors Yin, Shanzhi, Li, Chao, Bao, Youneng, Liang, Yongsheng, Meng, Fanyang, Liu, Wei
Format Conference Proceeding
LanguageEnglish
Published IEEE 23.05.2022
Subjects
Online AccessGet full text
ISSN2379-190X
DOI10.1109/ICASSP43922.2022.9747854

Cover

Abstract Recently, Learning-based image compression has reached comparable performance with traditional image codecs(such as JPEG, BPG, WebP). However, computational complexity and rate flexibility are still two major challenges for its practical deployment. To tackle these problems, this paper proposes two universal modules named Energy-based Channel Gating(ECG) and Bit-rate Modulator(BM), which can be directly embedded into existing end-to-end image compression models. ECG uses dynamic pruning to reduce FLOPs for more than 50% in convolution layers, and a BM pair can modulate the latent representation to control the bit-rate in a channel-wise manner. By implementing these two modules, existing learning-based image codecs can obtain ability to output arbitrary bit-rate with a single model and reduced computation.
AbstractList Recently, Learning-based image compression has reached comparable performance with traditional image codecs(such as JPEG, BPG, WebP). However, computational complexity and rate flexibility are still two major challenges for its practical deployment. To tackle these problems, this paper proposes two universal modules named Energy-based Channel Gating(ECG) and Bit-rate Modulator(BM), which can be directly embedded into existing end-to-end image compression models. ECG uses dynamic pruning to reduce FLOPs for more than 50% in convolution layers, and a BM pair can modulate the latent representation to control the bit-rate in a channel-wise manner. By implementing these two modules, existing learning-based image codecs can obtain ability to output arbitrary bit-rate with a single model and reduced computation.
Author Yin, Shanzhi
Li, Chao
Liang, Yongsheng
Meng, Fanyang
Liu, Wei
Bao, Youneng
Author_xml – sequence: 1
  givenname: Shanzhi
  surname: Yin
  fullname: Yin, Shanzhi
  organization: Harbin Institute of Technology,Shenzhen
– sequence: 2
  givenname: Chao
  surname: Li
  fullname: Li, Chao
  organization: Harbin Institute of Technology,Shenzhen
– sequence: 3
  givenname: Youneng
  surname: Bao
  fullname: Bao, Youneng
  organization: Harbin Institute of Technology,Shenzhen
– sequence: 4
  givenname: Yongsheng
  surname: Liang
  fullname: Liang, Yongsheng
  organization: Harbin Institute of Technology,Shenzhen
– sequence: 5
  givenname: Fanyang
  surname: Meng
  fullname: Meng, Fanyang
  organization: Peng Cheng Laboratory
– sequence: 6
  givenname: Wei
  surname: Liu
  fullname: Liu, Wei
  organization: Peng Cheng Laboratory
BookMark eNotj9tKAzEYhKMo2K0-gTf7Altz3OT3TkrVQlGxVrwr2eSPRPZQklXw7V2wMMxcfDDMFOSsH3okpGR0wRiFm_Xybrt9kQI4X3A6GWipjZInpGB1rSSdVJ-SGRcaKgb044IUOX9RSo2WZkZud338wZRtW65CiC5iP5bvNkXbtFi92hHLJ_xOE1539hPL5dAdEuYch_6SnAfbZrw65pzs7ldvy8dq8_wwzdpUkVMxVpbpYBUGLZmHoMA57iRTzHsjGu0EUOcdUAqCWQRfOzSNbxprQg0ohBJzcv3fGxFxf0ixs-l3f_wp_gD-lkr8
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP43922.2022.9747854
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1665405406
9781665405409
EISSN 2379-190X
EndPage 2029
ExternalDocumentID 9747854
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
GroupedDBID 23M
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-a17fa5ef741d9f59cc2c4151dd83b7c390cdc900931ae9d6ce8bdbba8f69e3353
IEDL.DBID RIE
IngestDate Wed Aug 27 02:25:02 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-a17fa5ef741d9f59cc2c4151dd83b7c390cdc900931ae9d6ce8bdbba8f69e3353
PageCount 5
ParticipantIDs ieee_primary_9747854
PublicationCentury 2000
PublicationDate 2022-May-23
PublicationDateYYYYMMDD 2022-05-23
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-May-23
  day: 23
PublicationDecade 2020
PublicationTitle Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998)
PublicationTitleAbbrev ICASSP
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008748
Score 2.298368
Snippet Recently, Learning-based image compression has reached comparable performance with traditional image codecs(such as JPEG, BPG, WebP). However, computational...
SourceID ieee
SourceType Publisher
StartPage 2025
SubjectTerms Adaptation models
Computational modeling
Convolution
dynamic pruning
Image coding
image compression
Modulation
Training
Transform coding
variable-rate
Title Universal Efficient Variable-Rate Neural Image Compression
URI https://ieeexplore.ieee.org/document/9747854
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwFLRKT3BhaRG7cuCI2yReYnNDVasWqaiiFPVWeXmWEJAilF74euwkLYs4cImiREksO3rznj0zRujSEqqFBYG1L76wz_85VtxZDFZS54xTigZx8viOD2f0ds7mDXS10cIAQEk-g044Ldfy7dKswlRZN-S-gtEttOV_s0qrtYm6IqNizdSJZXfUu5lOJx5t06C28of62R-bqJQYMthF4_XXK-rIc2dV6I75-GXM-N_m7aH2l1ovmmxwaB81ID9AO9-MBlvouuZfqJeoX3pG-BdFj75MDsIpfO_zzSi4dPjbo1cfYKIQJSqCbN5Gs0H_oTfE9a4J-CmNSYFVkjnFwPlUwUrHpDGp8SidWCuIzgyRsbFGhpmMRIG03IDQVmslHJdACCOHqJkvczhCkVSSZcopDomiTHGpiU_GKVDjy7KY62PUCr2weKuMMRZ1B5z8ffkUbYeRCEvvKTlDzeJ9Bece0Qt9UQ7lJwEiohk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT8IwHG4QD-rFBxjf7uDRwrY-1nozBAIKhAgYbqTPxKjDmHHxr7fdBj7iwcvSbOm2tMnv-_3a7_sKwJVGWDJtGJSu-IIu_6dQUKuh0Rxbq6wQ2IuTB0PaneK7GZlVwPVaC2OMyclnpuGb-V6-XqilXypr-tyXEbwBNh3uY1KotdZxlyWYrbg6IW_2Wrfj8cjhbez1Vu5S9v5xjEqOIp1dMFh9vyCPPDeWmWyoj1_WjP_9wT1Q_9LrBaM1Eu2DikkPwM43q8EauCkZGOIlaOeuEe5FwaMrlL10Cj64jDPwPh3uce_VhZjAx4mCIpvWwbTTnrS6sDw3AT7FIcqgiBIriLEuWdDcEq5UrBxOR1ozJBOFeKi04n4tIxKGa6oMk1pKwSzlBiGCDkE1XaTmCARccJIIK6iJBCaCcolcOo4NVq4wC6k8BjU_CvO3whpjXg7Ayd-3L8FWdzLoz_u94f0p2Paz4jfiY3QGqtn70pw7fM_kRT6tn6_kpWY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=Universal+Efficient+Variable-Rate+Neural+Image+Compression&rft.au=Yin%2C+Shanzhi&rft.au=Li%2C+Chao&rft.au=Bao%2C+Youneng&rft.au=Liang%2C+Yongsheng&rft.date=2022-05-23&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=2025&rft.epage=2029&rft_id=info:doi/10.1109%2FICASSP43922.2022.9747854&rft.externalDocID=9747854