Universal Efficient Variable-Rate Neural Image Compression
Recently, Learning-based image compression has reached comparable performance with traditional image codecs(such as JPEG, BPG, WebP). However, computational complexity and rate flexibility are still two major challenges for its practical deployment. To tackle these problems, this paper proposes two...
Saved in:
Published in | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) pp. 2025 - 2029 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
23.05.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2379-190X |
DOI | 10.1109/ICASSP43922.2022.9747854 |
Cover
Abstract | Recently, Learning-based image compression has reached comparable performance with traditional image codecs(such as JPEG, BPG, WebP). However, computational complexity and rate flexibility are still two major challenges for its practical deployment. To tackle these problems, this paper proposes two universal modules named Energy-based Channel Gating(ECG) and Bit-rate Modulator(BM), which can be directly embedded into existing end-to-end image compression models. ECG uses dynamic pruning to reduce FLOPs for more than 50% in convolution layers, and a BM pair can modulate the latent representation to control the bit-rate in a channel-wise manner. By implementing these two modules, existing learning-based image codecs can obtain ability to output arbitrary bit-rate with a single model and reduced computation. |
---|---|
AbstractList | Recently, Learning-based image compression has reached comparable performance with traditional image codecs(such as JPEG, BPG, WebP). However, computational complexity and rate flexibility are still two major challenges for its practical deployment. To tackle these problems, this paper proposes two universal modules named Energy-based Channel Gating(ECG) and Bit-rate Modulator(BM), which can be directly embedded into existing end-to-end image compression models. ECG uses dynamic pruning to reduce FLOPs for more than 50% in convolution layers, and a BM pair can modulate the latent representation to control the bit-rate in a channel-wise manner. By implementing these two modules, existing learning-based image codecs can obtain ability to output arbitrary bit-rate with a single model and reduced computation. |
Author | Yin, Shanzhi Li, Chao Liang, Yongsheng Meng, Fanyang Liu, Wei Bao, Youneng |
Author_xml | – sequence: 1 givenname: Shanzhi surname: Yin fullname: Yin, Shanzhi organization: Harbin Institute of Technology,Shenzhen – sequence: 2 givenname: Chao surname: Li fullname: Li, Chao organization: Harbin Institute of Technology,Shenzhen – sequence: 3 givenname: Youneng surname: Bao fullname: Bao, Youneng organization: Harbin Institute of Technology,Shenzhen – sequence: 4 givenname: Yongsheng surname: Liang fullname: Liang, Yongsheng organization: Harbin Institute of Technology,Shenzhen – sequence: 5 givenname: Fanyang surname: Meng fullname: Meng, Fanyang organization: Peng Cheng Laboratory – sequence: 6 givenname: Wei surname: Liu fullname: Liu, Wei organization: Peng Cheng Laboratory |
BookMark | eNotj9tKAzEYhKMo2K0-gTf7Altz3OT3TkrVQlGxVrwr2eSPRPZQklXw7V2wMMxcfDDMFOSsH3okpGR0wRiFm_Xybrt9kQI4X3A6GWipjZInpGB1rSSdVJ-SGRcaKgb044IUOX9RSo2WZkZud338wZRtW65CiC5iP5bvNkXbtFi92hHLJ_xOE1539hPL5dAdEuYch_6SnAfbZrw65pzs7ldvy8dq8_wwzdpUkVMxVpbpYBUGLZmHoMA57iRTzHsjGu0EUOcdUAqCWQRfOzSNbxprQg0ohBJzcv3fGxFxf0ixs-l3f_wp_gD-lkr8 |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICASSP43922.2022.9747854 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 1665405406 9781665405409 |
EISSN | 2379-190X |
EndPage | 2029 |
ExternalDocumentID | 9747854 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 |
GroupedDBID | 23M 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i203t-a17fa5ef741d9f59cc2c4151dd83b7c390cdc900931ae9d6ce8bdbba8f69e3353 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:25:02 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-a17fa5ef741d9f59cc2c4151dd83b7c390cdc900931ae9d6ce8bdbba8f69e3353 |
PageCount | 5 |
ParticipantIDs | ieee_primary_9747854 |
PublicationCentury | 2000 |
PublicationDate | 2022-May-23 |
PublicationDateYYYYMMDD | 2022-05-23 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-May-23 day: 23 |
PublicationDecade | 2020 |
PublicationTitle | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) |
PublicationTitleAbbrev | ICASSP |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0008748 |
Score | 2.298368 |
Snippet | Recently, Learning-based image compression has reached comparable performance with traditional image codecs(such as JPEG, BPG, WebP). However, computational... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 2025 |
SubjectTerms | Adaptation models Computational modeling Convolution dynamic pruning Image coding image compression Modulation Training Transform coding variable-rate |
Title | Universal Efficient Variable-Rate Neural Image Compression |
URI | https://ieeexplore.ieee.org/document/9747854 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwFLRKT3BhaRG7cuCI2yReYnNDVasWqaiiFPVWeXmWEJAilF74euwkLYs4cImiREksO3rznj0zRujSEqqFBYG1L76wz_85VtxZDFZS54xTigZx8viOD2f0ds7mDXS10cIAQEk-g044Ldfy7dKswlRZN-S-gtEttOV_s0qrtYm6IqNizdSJZXfUu5lOJx5t06C28of62R-bqJQYMthF4_XXK-rIc2dV6I75-GXM-N_m7aH2l1ovmmxwaB81ID9AO9-MBlvouuZfqJeoX3pG-BdFj75MDsIpfO_zzSi4dPjbo1cfYKIQJSqCbN5Gs0H_oTfE9a4J-CmNSYFVkjnFwPlUwUrHpDGp8SidWCuIzgyRsbFGhpmMRIG03IDQVmslHJdACCOHqJkvczhCkVSSZcopDomiTHGpiU_GKVDjy7KY62PUCr2weKuMMRZ1B5z8ffkUbYeRCEvvKTlDzeJ9Bece0Qt9UQ7lJwEiohk |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT8IwHG4QD-rFBxjf7uDRwrY-1nozBAIKhAgYbqTPxKjDmHHxr7fdBj7iwcvSbOm2tMnv-_3a7_sKwJVGWDJtGJSu-IIu_6dQUKuh0Rxbq6wQ2IuTB0PaneK7GZlVwPVaC2OMyclnpuGb-V6-XqilXypr-tyXEbwBNh3uY1KotdZxlyWYrbg6IW_2Wrfj8cjhbez1Vu5S9v5xjEqOIp1dMFh9vyCPPDeWmWyoj1_WjP_9wT1Q_9LrBaM1Eu2DikkPwM43q8EauCkZGOIlaOeuEe5FwaMrlL10Cj64jDPwPh3uce_VhZjAx4mCIpvWwbTTnrS6sDw3AT7FIcqgiBIriLEuWdDcEq5UrBxOR1ozJBOFeKi04n4tIxKGa6oMk1pKwSzlBiGCDkE1XaTmCARccJIIK6iJBCaCcolcOo4NVq4wC6k8BjU_CvO3whpjXg7Ayd-3L8FWdzLoz_u94f0p2Paz4jfiY3QGqtn70pw7fM_kRT6tn6_kpWY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=Universal+Efficient+Variable-Rate+Neural+Image+Compression&rft.au=Yin%2C+Shanzhi&rft.au=Li%2C+Chao&rft.au=Bao%2C+Youneng&rft.au=Liang%2C+Yongsheng&rft.date=2022-05-23&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=2025&rft.epage=2029&rft_id=info:doi/10.1109%2FICASSP43922.2022.9747854&rft.externalDocID=9747854 |