Towards a Quantitative Time Analysis and Decision Support for the Deployment of AI-Algorithms in Distributed Cyber-Physical Production Systems

Modern Cyber-Physical Production Systems get more and more intelligent by higher capacities of the used resources and more resource-efficient AI-algorithms. However, a significant challenge is finding the fitting architecture for hardware and software cost-efficiently and with low effort. Currently,...

Full description

Saved in:
Bibliographic Details
Published inIECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society pp. 1 - 6
Main Authors Hujo, Dominik, Vogel-Heuser, Birgit, Kruger, Marius, Schuhmann, Fabian
Format Conference Proceeding
LanguageEnglish
Published IEEE 13.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Modern Cyber-Physical Production Systems get more and more intelligent by higher capacities of the used resources and more resource-efficient AI-algorithms. However, a significant challenge is finding the fitting architecture for hardware and software cost-efficiently and with low effort. Currently, this process consists of trial and error or selecting overpowered hardware resources, which leads to expensive and time-consuming processes in the development. This paper deals with a quantitative benchmark of the timing behavior of selected algorithms for preprocessing to enable AI on representative hardware platforms in cyber-physical production systems, building on previous approaches that take a model-based view of hardware/software co-design. This approach is a first step away from a purely qualitative system design, towards a quantitative approach.
AbstractList Modern Cyber-Physical Production Systems get more and more intelligent by higher capacities of the used resources and more resource-efficient AI-algorithms. However, a significant challenge is finding the fitting architecture for hardware and software cost-efficiently and with low effort. Currently, this process consists of trial and error or selecting overpowered hardware resources, which leads to expensive and time-consuming processes in the development. This paper deals with a quantitative benchmark of the timing behavior of selected algorithms for preprocessing to enable AI on representative hardware platforms in cyber-physical production systems, building on previous approaches that take a model-based view of hardware/software co-design. This approach is a first step away from a purely qualitative system design, towards a quantitative approach.
Author Vogel-Heuser, Birgit
Schuhmann, Fabian
Hujo, Dominik
Kruger, Marius
Author_xml – sequence: 1
  givenname: Dominik
  surname: Hujo
  fullname: Hujo, Dominik
  email: dominik.hujo@tum.de
  organization: Technical University of Munich,Institute for Automation an Information Systems,Garching,Germany
– sequence: 2
  givenname: Birgit
  surname: Vogel-Heuser
  fullname: Vogel-Heuser, Birgit
  email: vogel-heuser@tum.de
  organization: Technical University Munich,Institute for Automation an Information Systems,Garching,Germany
– sequence: 3
  givenname: Marius
  surname: Kruger
  fullname: Kruger, Marius
  email: marius.krueger@tum.de
  organization: Technical University Munich,Institute for Automation an Information Systems,Garching,Germany
– sequence: 4
  givenname: Fabian
  surname: Schuhmann
  fullname: Schuhmann, Fabian
  email: fabian.schuhmann@tum.de
  organization: Technical University Munich,Institute for Automation an Information Systems,Garching,Germany
BookMark eNotkFFLwzAAhKMoOOd-gQ_mD3QmbdOkj6WbOhhu4nweSZq4QJuUJFX6J_zNFt3DcXAHH9zdgivrrALgAaMlxqh83Kzr3WvOMCbLFKV4WRJWEkwuwKKkDBcFyTMy6RLMUkJpgouc3oBFCEagnBGUU1TOwM_BfXPfBMjh28BtNJFH86XgwXQKVpa3YzBTaRu4UtIE4yx8H_re-Qi18zCe1FT0rRs7ZSN0GlabpGo_nTfx1AVoLFyZEL0RQ1QNrEehfLI_TVDJW7j3rhlk_IOOIaou3IFrzdugFmefg4-n9aF-Sba7501dbROToiwmHFPaNDLnNNNcajwtSrXAJdUZR4xyQTWjhWAqy5DUWSF4ThhlUmApkZjSObj_5xql1LH3puN-PJ4fzH4BZEtrWA
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IECON48115.2021.9589515
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665435543
1665435542
EISSN 2577-1647
EndPage 6
ExternalDocumentID 9589515
Genre orig-research
GrantInformation_xml – fundername: Ministry of Economic Affairs
  funderid: 10.13039/501100004725
GroupedDBID 6IE
6IH
6IL
6IN
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i203t-a177ddc4a73facf1b042fb197f3a087ab7f876b8e330cf36ba45878cb1cc0be33
IEDL.DBID RIE
IngestDate Wed Jun 26 19:25:39 EDT 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-a177ddc4a73facf1b042fb197f3a087ab7f876b8e330cf36ba45878cb1cc0be33
PageCount 6
ParticipantIDs ieee_primary_9589515
PublicationCentury 2000
PublicationDate 2021-Oct.-13
PublicationDateYYYYMMDD 2021-10-13
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-Oct.-13
  day: 13
PublicationDecade 2020
PublicationTitle IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society
PublicationTitleAbbrev IECON
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib048504709
ssib042470056
Score 2.210132
Snippet Modern Cyber-Physical Production Systems get more and more intelligent by higher capacities of the used resources and more resource-efficient AI-algorithms....
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Computer and Control Sysgtems
Control systems
Embedded control
Fitting
Hardware
Industrial electronics
Production systems
Real-time information systems
Software
Software algorithms
Title Towards a Quantitative Time Analysis and Decision Support for the Deployment of AI-Algorithms in Distributed Cyber-Physical Production Systems
URI https://ieeexplore.ieee.org/document/9589515
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0AJ09qwPidOXi00NJddvdIQAImGkwg4Ub2U4laDLQH_RH-ZneXgtF48NZOk3YyO9l5bWfeQ-iqQy1XIhaRFCKM5LCIaSwiww0hKjCyBLbP-85wim9nZFZB17tZGGNMaD4zTX8Y_uXrpSr8p7IWJ8wBAlJFVcr5ZlZrmzu4jamntdydMxI7Cy9bupKYt0ZeGhAzB4Hca2E7aZZ3-yGrEqrKYB_dbf3ZNJM8N4tcNtXHL6rG_zp8gBrf83sw3lWmQ1QxWR19TkKH7BoEPBQiC8NlbqsDPwQCW24SEJmGfqm7A17y08FzcMAWHFB0F7w8sH8mLC10R1H35XG5WuRPr2tYZND3JLxeP8to6L1Ls4rGZRZ4b_SGpxZKjvQGmg5uJr1hVKoxRIt2nOaRSCjVWmFBUyuUTXzMrUw4tamIGRWSWrezSmbSNFY27UiBCaNMyUSpWDrrEaply8wcI3CYU1hmqSQKY82Z4A5lxNYtiko1tuQE1X0s528bwo15GcbTv81naM-vpy8oSXqOavmqMBcOKeTyMqTIFzaSv_M
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0gHvSkBozfzsGjxZbustsjAQkoEEwg4Ub2U4laDJSD_gh_s7tLwWg8eGunSTuZney8tjPvIXRVoyaRPOSB4NyP5LCAKcwDnWhCpGdk8Wyf_Vp7hO_GZFxA15tZGK21bz7TFXfo_-WrmVy6T2U3CWEWEJAttG1xNautprXW2YOrmDpiy805I6G1JHlTVxQmNx0nDoiZBUH2xbAaVfL7_RBW8XWltYd6a49W7STPlWUmKvLjF1njf13eR-XvCT4YbGrTASrotIQ-h75HdgEcHpY89eNldrMDNwYCa3YS4KmCZq68A0700wJ0sNAWLFS0F5xAsHsmzAzUO0H95XE2n2ZPrwuYptB0NLxOQUsraLwLPQ8GeR44b9SKqRZylvQyGrVuh412kOsxBNNqGGcBjyhVSmJOY8OliVzMjYgSamIeMsoFNXZvFUzHcShNXBMcE0aZFJGUobDWQ1RMZ6k-QmBRJzfMUEEkxiphPLE4IzR2UWSssCHHqORiOXlbUW5M8jCe_G2-RDvtYa876Xb696do162tKy9RfIaK2Xypzy1uyMSFT5cvZ4zDPg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IECON+2021+%E2%80%93+47th+Annual+Conference+of+the+IEEE+Industrial+Electronics+Society&rft.atitle=Towards+a+Quantitative+Time+Analysis+and+Decision+Support+for+the+Deployment+of+AI-Algorithms+in+Distributed+Cyber-Physical+Production+Systems&rft.au=Hujo%2C+Dominik&rft.au=Vogel-Heuser%2C+Birgit&rft.au=Kruger%2C+Marius&rft.au=Schuhmann%2C+Fabian&rft.date=2021-10-13&rft.pub=IEEE&rft.eissn=2577-1647&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FIECON48115.2021.9589515&rft.externalDocID=9589515