RAISE: A Resistive Accelerator for Subject-Independent EEG Signal Classification

State-of-the-art deep neural networks (DNNs) for electroencephalography (EEG) signals classification focus on subject-related tasks, in which the test data and the training data needs to be collected from the same subject. In addition, due to limited computing resources and strict power budgets at e...

Full description

Saved in:
Bibliographic Details
Published inProceedings - Design, Automation, and Test in Europe Conference and Exhibition pp. 340 - 343
Main Authors Chen, Fan, Song, Linghao, Li, Hai Helen, Chen, Yiran
Format Conference Proceeding
LanguageEnglish
Published EDAA 01.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract State-of-the-art deep neural networks (DNNs) for electroencephalography (EEG) signals classification focus on subject-related tasks, in which the test data and the training data needs to be collected from the same subject. In addition, due to limited computing resources and strict power budgets at edges, it is very challenging to deploy the inference of such DNN models on biological devices. In this work, we present an algorithm/hardware co-designed low-power accelerator for subject-independent EEG signal classification. We propose a compact neural network that is capable to identify the common and stable structure among subjects. Based on it, we realize a robust subject-independent EEG signal classification model that can be extended to multiple BCI tasks with minimal overhead. Based on this model, we present RAISE, a low-power processing-in-memory inference accelerator by leveraging the emerging resistive memory. We compare the proposed model and hardware accelerator to prior arts across various BCI paradigms. We show that our model achieves the best subject-independent classification accuracy, while RAISE achieves 2.8× power reduction and 2.5× improvement in performance per watt compared to the state-of-the-art resistive inference accelerator.
AbstractList State-of-the-art deep neural networks (DNNs) for electroencephalography (EEG) signals classification focus on subject-related tasks, in which the test data and the training data needs to be collected from the same subject. In addition, due to limited computing resources and strict power budgets at edges, it is very challenging to deploy the inference of such DNN models on biological devices. In this work, we present an algorithm/hardware co-designed low-power accelerator for subject-independent EEG signal classification. We propose a compact neural network that is capable to identify the common and stable structure among subjects. Based on it, we realize a robust subject-independent EEG signal classification model that can be extended to multiple BCI tasks with minimal overhead. Based on this model, we present RAISE, a low-power processing-in-memory inference accelerator by leveraging the emerging resistive memory. We compare the proposed model and hardware accelerator to prior arts across various BCI paradigms. We show that our model achieves the best subject-independent classification accuracy, while RAISE achieves 2.8× power reduction and 2.5× improvement in performance per watt compared to the state-of-the-art resistive inference accelerator.
Author Chen, Fan
Chen, Yiran
Song, Linghao
Li, Hai Helen
Author_xml – sequence: 1
  givenname: Fan
  surname: Chen
  fullname: Chen, Fan
  email: fan.chen@duke.edu
  organization: Duke University,Department of Electrical and Computer Engineering,Durham,NC,U.S.A
– sequence: 2
  givenname: Linghao
  surname: Song
  fullname: Song, Linghao
  email: linghao.song@duke.edu
  organization: Duke University,Department of Electrical and Computer Engineering,Durham,NC,U.S.A
– sequence: 3
  givenname: Hai Helen
  surname: Li
  fullname: Li, Hai Helen
  email: hai.li@duke.edu
  organization: Duke University,Department of Electrical and Computer Engineering,Durham,NC,U.S.A
– sequence: 4
  givenname: Yiran
  surname: Chen
  fullname: Chen, Yiran
  email: yiran.chen@duke.edu
  organization: Duke University,Department of Electrical and Computer Engineering,Durham,NC,U.S.A
BookMark eNotkNFKwzAYhaMouM09gRfmBVrzJ02aeFdqnYWBss7rkca_klHT0VTBt7fgLs458HE4F2dJrsIQkJB7YCkXBszDU7GvJAijU844pCbLhTHigqxNrmcKhishs0uyACl1AsDghixjPDLGpOBmQd52Rd1Uj7SgO4w-Tv4HaeEc9jjaaRhpN6v5bo_opqQOH3jC2cJEq2pDG_8ZbE_L3sboO-_s5IdwS64720dcn3NF3p-rffmSbF83dVlsE8-ZmBILgmlnJOQMNVplc3SKG60ds4IrqZDnLhPYOcmZM5lsdas7PZc7QGiVWJG7_12PiIfT6L_s-Hs4HyD-ANr5UQw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.23919/DATE51398.2021.9473993
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 9783981926354
3981926358
EISSN 1558-1101
EndPage 343
ExternalDocumentID 9473993
Genre orig-research
GrantInformation_xml – fundername: NSF
  grantid: CCF-1725456
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
FEDTE
IEGSK
IPLJI
KZ1
LMP
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i203t-a1308c95170e8ea6a7ec62988c0a32656e27c43efc520c945b8b8f80e8f1e1b63
IEDL.DBID RIE
IngestDate Wed Aug 27 02:07:25 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-a1308c95170e8ea6a7ec62988c0a32656e27c43efc520c945b8b8f80e8f1e1b63
PageCount 4
ParticipantIDs ieee_primary_9473993
PublicationCentury 2000
PublicationDate 2021-Feb.-1
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-Feb.-1
  day: 01
PublicationDecade 2020
PublicationTitle Proceedings - Design, Automation, and Test in Europe Conference and Exhibition
PublicationTitleAbbrev DATE
PublicationYear 2021
Publisher EDAA
Publisher_xml – name: EDAA
SSID ssj0005329
Score 2.1420152
Snippet State-of-the-art deep neural networks (DNNs) for electroencephalography (EEG) signals classification focus on subject-related tasks, in which the test data and...
SourceID ieee
SourceType Publisher
StartPage 340
SubjectTerms BCI
Biological system modeling
Brain modeling
DNN
EEG
Electroencephalography
Neural networks
Pattern classification
resistive memory
Throughput
Training data
Title RAISE: A Resistive Accelerator for Subject-Independent EEG Signal Classification
URI https://ieeexplore.ieee.org/document/9473993
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0AJ72ggPE7e_Dolu72g663RqtggiF8JNxIu8waYgJGiwd_vbPbAmo8eGuaNm12un1vdt_MI-QKMwoxDz2PuSnXzOdcskx5nCEzVj7muErZKv7-U9id-I_TYFoh19taGACw4jNwzKHdy5-v1NoslbWl3zF4WiVVTNyKWq2dnMMTstBvCU9y2b6Lx0mA9MbItwR3ylt_eKhYCLmvk_7m4YVy5MVZ55mjPn_1Zfzv2x2Q1q5Yjw62MHRIKrBskPrGrYGWk7dB9r-1HmySwTDujZIbGtMhvJt5_gE0VgpByO67U-SyFH8qZpWG9bZWuTlNkgc6Wjzj50etn6ZRGtngtsjkPhnfdlnprsAWwvVyliJ6RQoJVseFCNIw7YAKhYwi5abI6YIQREf5HmgVCFdJP8iiLNIRXqw58Cz0jkhtuVrCMaEms1VpAFpidoJ8B1lGpkPQqQ5cLef6hDTNcM1eiwYas3KkTv8-fUb2TMgKafQ5qeVva7hA5M-zSxvyLyQzrKw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1NT8JAEJ0oHtQLKhq_3YMei-32g66JByJFUCBGMfGG7TJriAkYKRr9Lf4V_5uzbQE1Xkm8NU3TdDvTmfe2b2YADolR8K5n24YZWspwLEsYkbQtg5CxdIjjSplU8TdbXu3Wubhz7-bgY1ILg4iJ-AyL-jD5l98dyJHeKjsWTknn00xCeYlvr0TQhqf1ClnziPNq0D6rGdkMAaPHTTs2QorRviQYUTLRx9ALSyg9LnxfmiEhF9dDXpKOjUq63JTCcSM_8pVPFysLrciz6b7zsEA4w-VpddhUQGJzkSrGuC0scVwptwOXAJUWjHGrmD3sj6ktSdKq5uFzvNxUq_JYHMVRUb7_6gT5X9_HCqxPyxHZ1STRrsIc9tcgP55HwbLwtAbL35orFuDquly_CU5YmV3jUEeyF2RlKSnNJsoCRmidUdjU-1BGfTIMOGZBcM5ueg_0gbFkYqjWUiXuuw63M1nrBuT6gz5uAtPcXYYuKkH8ixAd4ahIeahC5ZpKdNUWFLR5Ok9pi5BOZpntv08fwGKt3Wx0GvXW5Q4saXdJheC7kIufR7hHOCeO9hN3Y3A_a3t-ATMDCXQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+Design%2C+Automation%2C+and+Test+in+Europe+Conference+and+Exhibition&rft.atitle=RAISE%3A+A+Resistive+Accelerator+for+Subject-Independent+EEG+Signal+Classification&rft.au=Chen%2C+Fan&rft.au=Song%2C+Linghao&rft.au=Li%2C+Hai+Helen&rft.au=Chen%2C+Yiran&rft.date=2021-02-01&rft.pub=EDAA&rft.eissn=1558-1101&rft.spage=340&rft.epage=343&rft_id=info:doi/10.23919%2FDATE51398.2021.9473993&rft.externalDocID=9473993