Depth from Defocus with Learned Optics for Imaging and Occlusion-aware Depth Estimation

Monocular depth estimation remains a challenging problem, despite significant advances in neural network architectures that leverage pictorial depth cues alone. Inspired by depth from defocus and emerging point spread function engineering approaches that optimize programmable optics end-to-end with...

Full description

Saved in:
Bibliographic Details
Published inIEEE International Conference on Computational Photography pp. 1 - 12
Main Authors Ikoma, Hayato, Nguyen, Cindy M., Metzler, Christopher A., Peng, Yifan, Wetzstein, Gordon
Format Conference Proceeding
LanguageEnglish
Published IEEE 23.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Monocular depth estimation remains a challenging problem, despite significant advances in neural network architectures that leverage pictorial depth cues alone. Inspired by depth from defocus and emerging point spread function engineering approaches that optimize programmable optics end-to-end with depth estimation networks, we propose a new and improved framework for depth estimation from a single RGB image using a learned phase-coded aperture. Our optimized aperture design uses rotational symmetry constraints for computational efficiency, and we jointly train the optics and the network using an occlusion-aware image formation model that provides more accurate defocus blur at depth discontinuities than previous techniques do. Using this framework and a custom prototype camera, we demonstrate state-of-the art image and depth estimation quality among end-to-end optimized computational cameras in simulation and experiment.
AbstractList Monocular depth estimation remains a challenging problem, despite significant advances in neural network architectures that leverage pictorial depth cues alone. Inspired by depth from defocus and emerging point spread function engineering approaches that optimize programmable optics end-to-end with depth estimation networks, we propose a new and improved framework for depth estimation from a single RGB image using a learned phase-coded aperture. Our optimized aperture design uses rotational symmetry constraints for computational efficiency, and we jointly train the optics and the network using an occlusion-aware image formation model that provides more accurate defocus blur at depth discontinuities than previous techniques do. Using this framework and a custom prototype camera, we demonstrate state-of-the art image and depth estimation quality among end-to-end optimized computational cameras in simulation and experiment.
Author Ikoma, Hayato
Nguyen, Cindy M.
Wetzstein, Gordon
Metzler, Christopher A.
Peng, Yifan
Author_xml – sequence: 1
  givenname: Hayato
  surname: Ikoma
  fullname: Ikoma, Hayato
  organization: Stanford University,Department of Electrical Engineering
– sequence: 2
  givenname: Cindy M.
  surname: Nguyen
  fullname: Nguyen, Cindy M.
  organization: Stanford University,Department of Electrical Engineering
– sequence: 3
  givenname: Christopher A.
  surname: Metzler
  fullname: Metzler, Christopher A.
  organization: University of Maryland,Department of Computer Science
– sequence: 4
  givenname: Yifan
  surname: Peng
  fullname: Peng, Yifan
  organization: Stanford University,Department of Electrical Engineering
– sequence: 5
  givenname: Gordon
  surname: Wetzstein
  fullname: Wetzstein, Gordon
  organization: Stanford University,Department of Electrical Engineering
BookMark eNotkM1Kw0AUhUdRsNY-gSDzAqlz7_xkZilp1UCgLhSXZZLe1JE2KTMpxbc30K4OfItz-M49u-n6jhh7AjEHEO65LIoPDdrCHAXC3Clj0MAVm7ncgjFagdPortkEVY5ZbqS5Y7OUfoUQYEA7lBP2vaDD8MPb2O_5gtq-OSZ-CiOpyMeONnx1GEKTeNtHXu79NnRb7rsRN83umELfZf7kI_FzzTINYe-HET-w29bvEs0uOWVfr8vP4j2rVm9l8VJlAYUcMofKWdui8x4kKYUN6o3NyUiBowQapevRS2hbe0Rqc6jr2kokaZ3ZNEJO2eO5NxDR-hDH-fi3vlwh_wFFSVPF
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCP51581.2021.9466261
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781665419529
1665419520
EISSN 2472-7636
EndPage 12
ExternalDocumentID 9466261
Genre orig-research
GrantInformation_xml – fundername: NSF
  grantid: DGE-1656518
  funderid: 10.13039/100000001
– fundername: Oak Ridge Institute for Science and Education (ORISE)
  funderid: 10.13039/100006229
– fundername: U.S. Department of Energy and the Office of the Director of National Intelligence (ODN)
  funderid: 10.13039/100011038
– fundername: Stanford Nano Shared Facilities (SNSF)
  funderid: 10.13039/501100001711
– fundername: National Science Foundation
  grantid: ECCS-2026822
  funderid: 10.13039/100000001
– fundername: NSF
  grantid: 1553333,1839974
  funderid: 10.13039/100000001
– fundername: ARO
  funderid: 10.13039/100000183
GroupedDBID 6IE
6IF
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i203t-924988f29aa13e442c25d87e63027812645b946058ba22ef71bbb832e3896dc03
IEDL.DBID RIE
IngestDate Wed Aug 27 02:26:47 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-924988f29aa13e442c25d87e63027812645b946058ba22ef71bbb832e3896dc03
PageCount 12
ParticipantIDs ieee_primary_9466261
PublicationCentury 2000
PublicationDate 2021-May-23
PublicationDateYYYYMMDD 2021-05-23
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-May-23
  day: 23
PublicationDecade 2020
PublicationTitle IEEE International Conference on Computational Photography
PublicationTitleAbbrev ICCP
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001615923
Score 2.1126685
Snippet Monocular depth estimation remains a challenging problem, despite significant advances in neural network architectures that leverage pictorial depth cues...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Apertures
Computational modeling
Computational Optics
Computational Photography
Estimation
Neural networks
Optics
Photography
Prototypes
Title Depth from Defocus with Learned Optics for Imaging and Occlusion-aware Depth Estimation
URI https://ieeexplore.ieee.org/document/9466261
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJ6YCLeJbHhhxmjifnvuhFqnQgYpule1cBALaqk2ExK_nLglUIAa2yEqcyJbz3t35PTN27epA29i1IkRuIQJQShiVgsgS3_dMbHUWkTh5cheNZsHtPJw32M23FgYAys1n4NBlWctPV7agVFmXvNAlxTp7GLhVWq1dPgWhGclKLQL2XNUd93pTROuEokDpOfXDP05RKUFk2GKTr9dXe0denCI3jv345cz43-87YJ2dXI9Pv4HokDVgecRaNb_k9erdttljH9b5EydFCe9Dhv1tOeVheWmyirfer8m0mSOP5eO38vgirpfYbO1rQVk1od_1BnjVzQB_DpXuscNmw8FDbyTqgxXEs3T9XFDMlSSZVFp7PgSBtDJMkxgiKmIi4kdBaFRZMDVaSshizxiDSx-Q3USpdf1j1lyulnDCuAWpJLlQxWADkL5BOiXjUGEYaMMkg1PWpnFarCvvjEU9RGd_N5-zfZorqs5L_4I1800Blwj6ubkqZ_sTwV2q8A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4IHvSECsbf9uDRjq372TM_AgrIASI30pa3aNRBYIuJf72v24RoPHhbmq1p2nTf997r95WQW1t6Uoe2Zj5yC-aBEEyJBbA4cl1HhVrGgREnD0dBb-rdz_xZhdxttTAAkB8-A8s85rX8xVJnJlXWNF7o3MQ6e4j7Pi_UWruMCoIz0pVSBuzYotlvtcaI15GJA7ljlZ__uEclh5FujQy_B1CcHnm1slRZ-vOXN-N_R3hIGjvBHh1voeiIVCA5JrWSYdJy_27q5KkNq_SZGk0JbUOM_W2oycTS3GYVX31cGdtmikyW9t_zC4yoTLBZ67fM5NWY_JBroEU3Hfw9FMrHBpl2O5NWj5VXK7AXbrspM1FXFMVcSOm44Hlcc38RhRCYMiZifuD5SuQlUyU5hzh0lFK4-QH5TbDQtntCqskygVNCNXDBjQ9VCNoD7iokVDz0BQaC2o9iOCN1M0_zVeGeMS-n6Pzv5huy35sMB_NBf_RwQQ7MuplaPXcvSTVdZ3CFFCBV1_nKfwHgm646
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Computational+Photography&rft.atitle=Depth+from+Defocus+with+Learned+Optics+for+Imaging+and+Occlusion-aware+Depth+Estimation&rft.au=Ikoma%2C+Hayato&rft.au=Nguyen%2C+Cindy+M.&rft.au=Metzler%2C+Christopher+A.&rft.au=Peng%2C+Yifan&rft.date=2021-05-23&rft.pub=IEEE&rft.eissn=2472-7636&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FICCP51581.2021.9466261&rft.externalDocID=9466261