Depth from Defocus with Learned Optics for Imaging and Occlusion-aware Depth Estimation
Monocular depth estimation remains a challenging problem, despite significant advances in neural network architectures that leverage pictorial depth cues alone. Inspired by depth from defocus and emerging point spread function engineering approaches that optimize programmable optics end-to-end with...
Saved in:
Published in | IEEE International Conference on Computational Photography pp. 1 - 12 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
23.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Monocular depth estimation remains a challenging problem, despite significant advances in neural network architectures that leverage pictorial depth cues alone. Inspired by depth from defocus and emerging point spread function engineering approaches that optimize programmable optics end-to-end with depth estimation networks, we propose a new and improved framework for depth estimation from a single RGB image using a learned phase-coded aperture. Our optimized aperture design uses rotational symmetry constraints for computational efficiency, and we jointly train the optics and the network using an occlusion-aware image formation model that provides more accurate defocus blur at depth discontinuities than previous techniques do. Using this framework and a custom prototype camera, we demonstrate state-of-the art image and depth estimation quality among end-to-end optimized computational cameras in simulation and experiment. |
---|---|
AbstractList | Monocular depth estimation remains a challenging problem, despite significant advances in neural network architectures that leverage pictorial depth cues alone. Inspired by depth from defocus and emerging point spread function engineering approaches that optimize programmable optics end-to-end with depth estimation networks, we propose a new and improved framework for depth estimation from a single RGB image using a learned phase-coded aperture. Our optimized aperture design uses rotational symmetry constraints for computational efficiency, and we jointly train the optics and the network using an occlusion-aware image formation model that provides more accurate defocus blur at depth discontinuities than previous techniques do. Using this framework and a custom prototype camera, we demonstrate state-of-the art image and depth estimation quality among end-to-end optimized computational cameras in simulation and experiment. |
Author | Ikoma, Hayato Nguyen, Cindy M. Wetzstein, Gordon Metzler, Christopher A. Peng, Yifan |
Author_xml | – sequence: 1 givenname: Hayato surname: Ikoma fullname: Ikoma, Hayato organization: Stanford University,Department of Electrical Engineering – sequence: 2 givenname: Cindy M. surname: Nguyen fullname: Nguyen, Cindy M. organization: Stanford University,Department of Electrical Engineering – sequence: 3 givenname: Christopher A. surname: Metzler fullname: Metzler, Christopher A. organization: University of Maryland,Department of Computer Science – sequence: 4 givenname: Yifan surname: Peng fullname: Peng, Yifan organization: Stanford University,Department of Electrical Engineering – sequence: 5 givenname: Gordon surname: Wetzstein fullname: Wetzstein, Gordon organization: Stanford University,Department of Electrical Engineering |
BookMark | eNotkM1Kw0AUhUdRsNY-gSDzAqlz7_xkZilp1UCgLhSXZZLe1JE2KTMpxbc30K4OfItz-M49u-n6jhh7AjEHEO65LIoPDdrCHAXC3Clj0MAVm7ncgjFagdPortkEVY5ZbqS5Y7OUfoUQYEA7lBP2vaDD8MPb2O_5gtq-OSZ-CiOpyMeONnx1GEKTeNtHXu79NnRb7rsRN83umELfZf7kI_FzzTINYe-HET-w29bvEs0uOWVfr8vP4j2rVm9l8VJlAYUcMofKWdui8x4kKYUN6o3NyUiBowQapevRS2hbe0Rqc6jr2kokaZ3ZNEJO2eO5NxDR-hDH-fi3vlwh_wFFSVPF |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICCP51581.2021.9466261 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9781665419529 1665419520 |
EISSN | 2472-7636 |
EndPage | 12 |
ExternalDocumentID | 9466261 |
Genre | orig-research |
GrantInformation_xml | – fundername: NSF grantid: DGE-1656518 funderid: 10.13039/100000001 – fundername: Oak Ridge Institute for Science and Education (ORISE) funderid: 10.13039/100006229 – fundername: U.S. Department of Energy and the Office of the Director of National Intelligence (ODN) funderid: 10.13039/100011038 – fundername: Stanford Nano Shared Facilities (SNSF) funderid: 10.13039/501100001711 – fundername: National Science Foundation grantid: ECCS-2026822 funderid: 10.13039/100000001 – fundername: NSF grantid: 1553333,1839974 funderid: 10.13039/100000001 – fundername: ARO funderid: 10.13039/100000183 |
GroupedDBID | 6IE 6IF 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL RNS |
ID | FETCH-LOGICAL-i203t-924988f29aa13e442c25d87e63027812645b946058ba22ef71bbb832e3896dc03 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:26:47 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-924988f29aa13e442c25d87e63027812645b946058ba22ef71bbb832e3896dc03 |
PageCount | 12 |
ParticipantIDs | ieee_primary_9466261 |
PublicationCentury | 2000 |
PublicationDate | 2021-May-23 |
PublicationDateYYYYMMDD | 2021-05-23 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-May-23 day: 23 |
PublicationDecade | 2020 |
PublicationTitle | IEEE International Conference on Computational Photography |
PublicationTitleAbbrev | ICCP |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001615923 |
Score | 2.1126685 |
Snippet | Monocular depth estimation remains a challenging problem, despite significant advances in neural network architectures that leverage pictorial depth cues... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Apertures Computational modeling Computational Optics Computational Photography Estimation Neural networks Optics Photography Prototypes |
Title | Depth from Defocus with Learned Optics for Imaging and Occlusion-aware Depth Estimation |
URI | https://ieeexplore.ieee.org/document/9466261 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJ6YCLeJbHhhxmjifnvuhFqnQgYpule1cBALaqk2ExK_nLglUIAa2yEqcyJbz3t35PTN27epA29i1IkRuIQJQShiVgsgS3_dMbHUWkTh5cheNZsHtPJw32M23FgYAys1n4NBlWctPV7agVFmXvNAlxTp7GLhVWq1dPgWhGclKLQL2XNUd93pTROuEokDpOfXDP05RKUFk2GKTr9dXe0denCI3jv345cz43-87YJ2dXI9Pv4HokDVgecRaNb_k9erdttljH9b5EydFCe9Dhv1tOeVheWmyirfer8m0mSOP5eO38vgirpfYbO1rQVk1od_1BnjVzQB_DpXuscNmw8FDbyTqgxXEs3T9XFDMlSSZVFp7PgSBtDJMkxgiKmIi4kdBaFRZMDVaSshizxiDSx-Q3USpdf1j1lyulnDCuAWpJLlQxWADkL5BOiXjUGEYaMMkg1PWpnFarCvvjEU9RGd_N5-zfZorqs5L_4I1800Blwj6ubkqZ_sTwV2q8A |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4IHvSECsbf9uDRjq372TM_AgrIASI30pa3aNRBYIuJf72v24RoPHhbmq1p2nTf997r95WQW1t6Uoe2Zj5yC-aBEEyJBbA4cl1HhVrGgREnD0dBb-rdz_xZhdxttTAAkB8-A8s85rX8xVJnJlXWNF7o3MQ6e4j7Pi_UWruMCoIz0pVSBuzYotlvtcaI15GJA7ljlZ__uEclh5FujQy_B1CcHnm1slRZ-vOXN-N_R3hIGjvBHh1voeiIVCA5JrWSYdJy_27q5KkNq_SZGk0JbUOM_W2oycTS3GYVX31cGdtmikyW9t_zC4yoTLBZ67fM5NWY_JBroEU3Hfw9FMrHBpl2O5NWj5VXK7AXbrspM1FXFMVcSOm44Hlcc38RhRCYMiZifuD5SuQlUyU5hzh0lFK4-QH5TbDQtntCqskygVNCNXDBjQ9VCNoD7iokVDz0BQaC2o9iOCN1M0_zVeGeMS-n6Pzv5huy35sMB_NBf_RwQQ7MuplaPXcvSTVdZ3CFFCBV1_nKfwHgm646 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Computational+Photography&rft.atitle=Depth+from+Defocus+with+Learned+Optics+for+Imaging+and+Occlusion-aware+Depth+Estimation&rft.au=Ikoma%2C+Hayato&rft.au=Nguyen%2C+Cindy+M.&rft.au=Metzler%2C+Christopher+A.&rft.au=Peng%2C+Yifan&rft.date=2021-05-23&rft.pub=IEEE&rft.eissn=2472-7636&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FICCP51581.2021.9466261&rft.externalDocID=9466261 |