Unsupervised Magnification of Posture Deviations Across Subjects

Analyzing human posture and precisely comparing it across different subjects is essential for accurate understanding of behavior and numerous vision applications such as medical diagnostics, sports, or surveillance. Motion magnification techniques help to see even small deviations in posture that ar...

Full description

Saved in:
Bibliographic Details
Published inProceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 8253 - 8263
Main Authors Dorkenwald, Michael, Buchler, Uta, Ommer, Bjorn
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Analyzing human posture and precisely comparing it across different subjects is essential for accurate understanding of behavior and numerous vision applications such as medical diagnostics, sports, or surveillance. Motion magnification techniques help to see even small deviations in posture that are invisible to the naked eye. However, they fail when comparing subtle posture differences across individuals with diverse appearance. Keypoint-based posture estimation and classification techniques can handle large variations in appearance, but are invariant to subtle deviations in posture. We present an approach to unsupervised magnification of posture differences across individuals despite large deviations in appearance. We do not require keypoint annotation and visualize deviations on a sub-bodypart level. To transfer appearance across subjects onto a magnified posture, we propose a novel loss for disentangling appearance and posture in an autoencoder. Posture magnification yields exaggerated images that are different from the training set. Therefore, we incorporate magnification already into the training of the disentangled autoencoder and learn on real data and synthesized magnifications without supervision. Experiments confirm that our approach improves upon the state-of-the-art in magnification and on the application of discovering posture deviations due to impairment.
AbstractList Analyzing human posture and precisely comparing it across different subjects is essential for accurate understanding of behavior and numerous vision applications such as medical diagnostics, sports, or surveillance. Motion magnification techniques help to see even small deviations in posture that are invisible to the naked eye. However, they fail when comparing subtle posture differences across individuals with diverse appearance. Keypoint-based posture estimation and classification techniques can handle large variations in appearance, but are invariant to subtle deviations in posture. We present an approach to unsupervised magnification of posture differences across individuals despite large deviations in appearance. We do not require keypoint annotation and visualize deviations on a sub-bodypart level. To transfer appearance across subjects onto a magnified posture, we propose a novel loss for disentangling appearance and posture in an autoencoder. Posture magnification yields exaggerated images that are different from the training set. Therefore, we incorporate magnification already into the training of the disentangled autoencoder and learn on real data and synthesized magnifications without supervision. Experiments confirm that our approach improves upon the state-of-the-art in magnification and on the application of discovering posture deviations due to impairment.
Author Dorkenwald, Michael
Ommer, Bjorn
Buchler, Uta
Author_xml – sequence: 1
  givenname: Michael
  surname: Dorkenwald
  fullname: Dorkenwald, Michael
  organization: HCI / IWR, Heidelberg University, Germany
– sequence: 2
  givenname: Uta
  surname: Buchler
  fullname: Buchler, Uta
  organization: HCI / IWR, Heidelberg University, Germany
– sequence: 3
  givenname: Bjorn
  surname: Ommer
  fullname: Ommer, Bjorn
  organization: HCI / IWR, Heidelberg University, Germany
BookMark eNotjF1LwzAUQKMoOOd-gT70D7Tem7Q3yZujfsLEoc7XkTY3kqHtaLqB_15RHw4HzsM5FUdd37EQFwgFItjL-m35XEoCKCRIKACMNAdiZrVBLX9AMtWhmCCQysmiPRGzlDYAoCQiWTMRV6su7bY87GNinz269y6G2Lox9l3Wh2zZp3E3cHbN-_gbUzZvhz6l7GXXbLgd05k4Du4j8ezfU7G6vXmt7_PF091DPV_kUYIacxOC1pWxZVN5Sy4E44GYtQrSk8OWWCnJpLzTRI0n6xpkzb4pJXJlUU3F-d83MvN6O8RPN3ytLVZUEahvpgZNsQ
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR42600.2020.00828
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781728171685
1728171687
EISSN 1063-6919
EndPage 8263
ExternalDocumentID 9156560
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i203t-8ff775894b5d96aff8d06ee73f2d6a1c6e332e63da766bd69ab1e7edb421e5913
IEDL.DBID RIE
IngestDate Wed Aug 27 02:30:35 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-8ff775894b5d96aff8d06ee73f2d6a1c6e332e63da766bd69ab1e7edb421e5913
PageCount 11
ParticipantIDs ieee_primary_9156560
PublicationCentury 2000
PublicationDate 2020-Jun
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-Jun
PublicationDecade 2020
PublicationTitle Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online)
PublicationTitleAbbrev CVPR
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211698
Score 2.1779141
Snippet Analyzing human posture and precisely comparing it across different subjects is essential for accurate understanding of behavior and numerous vision...
SourceID ieee
SourceType Publisher
StartPage 8253
SubjectTerms Computer vision
Decoding
Encoding
Image coding
Image color analysis
Image reconstruction
Training
Title Unsupervised Magnification of Posture Deviations Across Subjects
URI https://ieeexplore.ieee.org/document/9156560
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJ6YCLeJbHhhJ64_EiTcQUFVIRRWiqFtlx2eEkNKqSRZ-PbYTCkIMbJGXWD7F797lvTuELlVOiRbGRLkxiSMoVEbKwV6klQTp0tlYcO9Gnj6KyTx-WCSLDrraemEAIIjPYOgfw798s8prXyobSerTD0fQdxxxa7xa23oKd0xGyKx1x1EiR7cvs6fQf92xQOYFXJkfuf5jhkqAkHEPTb9e3ihH3od1pYf5x6--jP_d3R4afJv18GwLQ_uoA8UB6rXZJW6_3bKPrudFWa_91VC69al6LbxKKAQGryz2U3vrDeA7h5RNFQ_fBAjF7m7xxZpygObj--fbSdTOT4jeGOFVlFmbOjogY50YKZS1mSECIOWWGaFoLoBzBoIblQqhjZBKU0jB6JhRSCTlh6hbrAo4QthxTZ25zI9InsdcEEV9JzvCLBFZAiw5Rn1_IMt10yJj2Z7Fyd_Lp2jXh6RRXJ2hbrWp4dxhe6UvQlA_ASFQo-A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELWqMsBUoEV844GRtHacOPEGKlQFmqpCLepW2fGlQkhp1SQLvx47CQUhBrbISyyf4nfv8t4dQtcypkRxrZ1Ya98QFCocaWDPUVKAMOmsx5l1I0djPpx5T3N_3kA3Wy8MAJTiM-jax_Jfvl7FhS2V9QS16Ych6DsG931aubW2FRVmuAwXYe2Po0T0-q-Tl7IDu-GBrpVwhXbo-o8pKiWIDFoo-np9pR157xa56sYfvzoz_nd_-6jzbdfDky0QHaAGpIeoVeeXuP56sza6naVZsbaXQ2bWI7lMrU6oDA1eJdjO7S02gO8NVlZ1PHxXgig2t4st12QdNBs8TPtDp56g4Ly5hOVOmCSBIQTCU74WXCZJqAkHCFjiai5pzIExFzjTMuBcaS6kohCAVp5LwReUHaFmukrhGGHDNlVocj8iWOwxTiS1veyImxAe-uD6J6htD2SxrppkLOqzOP17-QrtDqfRaDF6HD-foT0bnkp_dY6a-aaAC4P0ubosA_wJ4C-nKQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=Unsupervised+Magnification+of+Posture+Deviations+Across+Subjects&rft.au=Dorkenwald%2C+Michael&rft.au=Buchler%2C+Uta&rft.au=Ommer%2C+Bjorn&rft.date=2020-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=8253&rft.epage=8263&rft_id=info:doi/10.1109%2FCVPR42600.2020.00828&rft.externalDocID=9156560