Multi-Task Learning for Calorie Prediction on a Novel Large-Scale Recipe Dataset Enriched with Nutritional Information
A rapidly growing amount of content posted online, such as food recipes, opens doors to new exciting applications at the intersection of vision and language. In this work, we aim to estimate the calorie amount of a meal directly from an image by learning from recipes people have published on the Int...
Saved in:
Published in | 2020 25th International Conference on Pattern Recognition (ICPR) pp. 4001 - 4008 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
10.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A rapidly growing amount of content posted online, such as food recipes, opens doors to new exciting applications at the intersection of vision and language. In this work, we aim to estimate the calorie amount of a meal directly from an image by learning from recipes people have published on the Internet, thus skipping time-consuming manual data annotation. Since there are few large-scale publicly available datasets captured in unconstrained environments, we propose the pic2kcal benchmark comprising 308 000 images from over 70 000 recipes including photographs, ingredients, and instructions. To obtain nutritional information of the ingredients and automatically determine the ground-truth calorie value, we match the items in the recipes with structured information from a food item database. We evaluate various neural networks for regression of the calorie quantity and extend them with the multi-task paradigm. Our learning procedure combines the calorie estimation with prediction of proteins, carbohydrates, and fat amounts as well as a multi-label ingredient classification. Our experiments demonstrate clear benefits of multi-task learning for calorie estimation, surpassing the single-task calorie regression by 9.9%. To encourage further research on this task, we make the code for generating the dataset and the models publicly available. |
---|---|
AbstractList | A rapidly growing amount of content posted online, such as food recipes, opens doors to new exciting applications at the intersection of vision and language. In this work, we aim to estimate the calorie amount of a meal directly from an image by learning from recipes people have published on the Internet, thus skipping time-consuming manual data annotation. Since there are few large-scale publicly available datasets captured in unconstrained environments, we propose the pic2kcal benchmark comprising 308 000 images from over 70 000 recipes including photographs, ingredients, and instructions. To obtain nutritional information of the ingredients and automatically determine the ground-truth calorie value, we match the items in the recipes with structured information from a food item database. We evaluate various neural networks for regression of the calorie quantity and extend them with the multi-task paradigm. Our learning procedure combines the calorie estimation with prediction of proteins, carbohydrates, and fat amounts as well as a multi-label ingredient classification. Our experiments demonstrate clear benefits of multi-task learning for calorie estimation, surpassing the single-task calorie regression by 9.9%. To encourage further research on this task, we make the code for generating the dataset and the models publicly available. |
Author | Frank, Lukas Heusser, Verena Stiefelhagen, Rainer Haurilet, Monica Roitberg, Alina Ruede, Robin |
Author_xml | – sequence: 1 givenname: Robin surname: Ruede fullname: Ruede, Robin email: robin.ruede@student.kit.edu organization: Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology,Germany – sequence: 2 givenname: Verena surname: Heusser fullname: Heusser, Verena email: verena.heusser@student.kit.edu organization: Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology,Germany – sequence: 3 givenname: Lukas surname: Frank fullname: Frank, Lukas email: lukas.frank@student.kit.edu organization: Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology,Germany – sequence: 4 givenname: Alina surname: Roitberg fullname: Roitberg, Alina email: alina.roitberg@kit.edu organization: Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology,Germany – sequence: 5 givenname: Monica surname: Haurilet fullname: Haurilet, Monica email: monica.haurilet@kit.edu organization: Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology,Germany – sequence: 6 givenname: Rainer surname: Stiefelhagen fullname: Stiefelhagen, Rainer email: rainer.stiefelhagen@kit.edu organization: Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology,Germany |
BookMark | eNotkN9KwzAYxSPohZs-gSDfC7TmT9skl1KnDuocc16PmH7Zgl060mzi27vh4MDhcDi_izMil6EPSMg9ozljVD9M6_miUIpWOaec5bpgXAl9QUZMcsWOhRLX5PC275LPlmb4hgZNDD6swfURatP10SPMI7beJt8HOMrArD9gB42Ja8w-rOkQFmj9DuHJJDNggkmI3m6whR-fNjDbp-hPa9PBNBzBW3NKN-TKmW7A27OPyefzZFm_Zs37y7R-bDLPqUiZckqgRVYpSlVJS6q1LErbamZtZSU6lFJLJTlyaisqhJOqda4qhS0Lqr7EmNz9cz0irnbRb038XZ2vEH-ERVnQ |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICPR48806.2021.9412839 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1728188083 9781728188089 |
EndPage | 4008 |
ExternalDocumentID | 9412839 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i203t-8f83ece168008505099745cd91cc6c7efe7797872e20c6033f78dff653c5408b3 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:39:16 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-8f83ece168008505099745cd91cc6c7efe7797872e20c6033f78dff653c5408b3 |
PageCount | 8 |
ParticipantIDs | ieee_primary_9412839 |
PublicationCentury | 2000 |
PublicationDate | 2021-Jan.-10 |
PublicationDateYYYYMMDD | 2021-01-10 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-Jan.-10 day: 10 |
PublicationDecade | 2020 |
PublicationTitle | 2020 25th International Conference on Pattern Recognition (ICPR) |
PublicationTitleAbbrev | ICPR |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 2.2356553 |
Snippet | A rapidly growing amount of content posted online, such as food recipes, opens doors to new exciting applications at the intersection of vision and language.... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 4001 |
SubjectTerms | Annotations Benchmark testing calorie estimation dataset Estimation ingredients Manuals multi-task learning Neural networks Pattern recognition Proteins recipes |
Title | Multi-Task Learning for Calorie Prediction on a Novel Large-Scale Recipe Dataset Enriched with Nutritional Information |
URI | https://ieeexplore.ieee.org/document/9412839 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6Qkyc1YPydHjy6sa3b2p4RgkYIUUi4kbZ7NQQyCA4O_vX2jYHReDDZYT_Tpd-y9_r6fV8JuedcW2EYc2MTlnpoSO4ppR0gFrQNwSZJggLn_iDtjePnSTKpkYeDFgYASvIZ-LhbzuVnS7PBUllLxu5vyuQROeJS7rRaleg3DGTrqT18xc8RiQdR6Fc3_1g1pQwa3RPS3ze344rM_U2hffP5y4nxv-9zSprf8jw6PASeM1KDvEG2pZTWG6mPOa1MU9-py0hpWyHJDp_AORnEgbpN0cFyCwv6gkxw780hBdSlkLMV0EdVuNBW0E6-Rp5oRrFWSwd72361oJWGCY-aZNztjNo9r1pUwZtFASs8YQUDA2EqSre6BJWzcWIyGRqTGg4WOHcjSx5BFJg0YMxykVmbJsy45E5odk7q-TKHC0K1BJEqdy0OjMtDjBRGBEJlImMR15xdkgb22XS1882YVt119ffpa3KMuGF5IwxuSL1Yb-DWBfxC35VIfwHSNa3B |
link.rule.ids | 310,311,783,787,792,793,799,27938,55087 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pSA8bf9uDRjW3d1u6MEFBYiELCjXTdqyGQQXBw8K-3bwyMxoPJDvuZLv2WvdfX7_tKyAPniRaKMTM2YaGFhuSWlIkBREOiXdBBEKDAuR-HnZH_PA7GFfK418IAQEE-Axt3i7n8dKHWWCprRL75m7LogByavFrwrVqrlP26TtToNgev-EEi9cBz7fL2H-umFGGjfUL6uwa3bJGZvc4TW33-8mL87xudkvq3QI8O9qHnjFQgq5FNIaa1hvJjRkvb1HdqclLalEizwydwVgaRoGaTNF5sYE57yAW33gxWQE0SOV0CfZK5CW45bWUrZIqmFKu1NN4Z98s5LVVMeFQno3Zr2OxY5bIK1tRzWG4JLRgocENR-NUFqJ31A5VGrlKh4qCBczO25B54jgodxjQXqdZhwJRJ70TCzkk1W2RwQWgSgQilueY7ymQiKhJKOEKmImUeTzi7JDXss8ly65wxKbvr6u_T9-SoM-z3Jr1u_HJNjhFDLHa4zg2p5qs13Jrwnyd3BepfFc-xDQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+25th+International+Conference+on+Pattern+Recognition+%28ICPR%29&rft.atitle=Multi-Task+Learning+for+Calorie+Prediction+on+a+Novel+Large-Scale+Recipe+Dataset+Enriched+with+Nutritional+Information&rft.au=Ruede%2C+Robin&rft.au=Heusser%2C+Verena&rft.au=Frank%2C+Lukas&rft.au=Roitberg%2C+Alina&rft.date=2021-01-10&rft.pub=IEEE&rft.spage=4001&rft.epage=4008&rft_id=info:doi/10.1109%2FICPR48806.2021.9412839&rft.externalDocID=9412839 |