Multi-Task Learning for Calorie Prediction on a Novel Large-Scale Recipe Dataset Enriched with Nutritional Information

A rapidly growing amount of content posted online, such as food recipes, opens doors to new exciting applications at the intersection of vision and language. In this work, we aim to estimate the calorie amount of a meal directly from an image by learning from recipes people have published on the Int...

Full description

Saved in:
Bibliographic Details
Published in2020 25th International Conference on Pattern Recognition (ICPR) pp. 4001 - 4008
Main Authors Ruede, Robin, Heusser, Verena, Frank, Lukas, Roitberg, Alina, Haurilet, Monica, Stiefelhagen, Rainer
Format Conference Proceeding
LanguageEnglish
Published IEEE 10.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A rapidly growing amount of content posted online, such as food recipes, opens doors to new exciting applications at the intersection of vision and language. In this work, we aim to estimate the calorie amount of a meal directly from an image by learning from recipes people have published on the Internet, thus skipping time-consuming manual data annotation. Since there are few large-scale publicly available datasets captured in unconstrained environments, we propose the pic2kcal benchmark comprising 308 000 images from over 70 000 recipes including photographs, ingredients, and instructions. To obtain nutritional information of the ingredients and automatically determine the ground-truth calorie value, we match the items in the recipes with structured information from a food item database. We evaluate various neural networks for regression of the calorie quantity and extend them with the multi-task paradigm. Our learning procedure combines the calorie estimation with prediction of proteins, carbohydrates, and fat amounts as well as a multi-label ingredient classification. Our experiments demonstrate clear benefits of multi-task learning for calorie estimation, surpassing the single-task calorie regression by 9.9%. To encourage further research on this task, we make the code for generating the dataset and the models publicly available.
AbstractList A rapidly growing amount of content posted online, such as food recipes, opens doors to new exciting applications at the intersection of vision and language. In this work, we aim to estimate the calorie amount of a meal directly from an image by learning from recipes people have published on the Internet, thus skipping time-consuming manual data annotation. Since there are few large-scale publicly available datasets captured in unconstrained environments, we propose the pic2kcal benchmark comprising 308 000 images from over 70 000 recipes including photographs, ingredients, and instructions. To obtain nutritional information of the ingredients and automatically determine the ground-truth calorie value, we match the items in the recipes with structured information from a food item database. We evaluate various neural networks for regression of the calorie quantity and extend them with the multi-task paradigm. Our learning procedure combines the calorie estimation with prediction of proteins, carbohydrates, and fat amounts as well as a multi-label ingredient classification. Our experiments demonstrate clear benefits of multi-task learning for calorie estimation, surpassing the single-task calorie regression by 9.9%. To encourage further research on this task, we make the code for generating the dataset and the models publicly available.
Author Frank, Lukas
Heusser, Verena
Stiefelhagen, Rainer
Haurilet, Monica
Roitberg, Alina
Ruede, Robin
Author_xml – sequence: 1
  givenname: Robin
  surname: Ruede
  fullname: Ruede, Robin
  email: robin.ruede@student.kit.edu
  organization: Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology,Germany
– sequence: 2
  givenname: Verena
  surname: Heusser
  fullname: Heusser, Verena
  email: verena.heusser@student.kit.edu
  organization: Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology,Germany
– sequence: 3
  givenname: Lukas
  surname: Frank
  fullname: Frank, Lukas
  email: lukas.frank@student.kit.edu
  organization: Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology,Germany
– sequence: 4
  givenname: Alina
  surname: Roitberg
  fullname: Roitberg, Alina
  email: alina.roitberg@kit.edu
  organization: Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology,Germany
– sequence: 5
  givenname: Monica
  surname: Haurilet
  fullname: Haurilet, Monica
  email: monica.haurilet@kit.edu
  organization: Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology,Germany
– sequence: 6
  givenname: Rainer
  surname: Stiefelhagen
  fullname: Stiefelhagen, Rainer
  email: rainer.stiefelhagen@kit.edu
  organization: Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology,Germany
BookMark eNotkN9KwzAYxSPohZs-gSDfC7TmT9skl1KnDuocc16PmH7Zgl060mzi27vh4MDhcDi_izMil6EPSMg9ozljVD9M6_miUIpWOaec5bpgXAl9QUZMcsWOhRLX5PC275LPlmb4hgZNDD6swfURatP10SPMI7beJt8HOMrArD9gB42Ja8w-rOkQFmj9DuHJJDNggkmI3m6whR-fNjDbp-hPa9PBNBzBW3NKN-TKmW7A27OPyefzZFm_Zs37y7R-bDLPqUiZckqgRVYpSlVJS6q1LErbamZtZSU6lFJLJTlyaisqhJOqda4qhS0Lqr7EmNz9cz0irnbRb038XZ2vEH-ERVnQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICPR48806.2021.9412839
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728188083
9781728188089
EndPage 4008
ExternalDocumentID 9412839
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-8f83ece168008505099745cd91cc6c7efe7797872e20c6033f78dff653c5408b3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:39:16 EDT 2023
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-8f83ece168008505099745cd91cc6c7efe7797872e20c6033f78dff653c5408b3
PageCount 8
ParticipantIDs ieee_primary_9412839
PublicationCentury 2000
PublicationDate 2021-Jan.-10
PublicationDateYYYYMMDD 2021-01-10
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-Jan.-10
  day: 10
PublicationDecade 2020
PublicationTitle 2020 25th International Conference on Pattern Recognition (ICPR)
PublicationTitleAbbrev ICPR
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.2356553
Snippet A rapidly growing amount of content posted online, such as food recipes, opens doors to new exciting applications at the intersection of vision and language....
SourceID ieee
SourceType Publisher
StartPage 4001
SubjectTerms Annotations
Benchmark testing
calorie estimation
dataset
Estimation
ingredients
Manuals
multi-task learning
Neural networks
Pattern recognition
Proteins
recipes
Title Multi-Task Learning for Calorie Prediction on a Novel Large-Scale Recipe Dataset Enriched with Nutritional Information
URI https://ieeexplore.ieee.org/document/9412839
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6Qkyc1YPydHjy6sa3b2p4RgkYIUUi4kbZ7NQQyCA4O_vX2jYHReDDZYT_Tpd-y9_r6fV8JuedcW2EYc2MTlnpoSO4ppR0gFrQNwSZJggLn_iDtjePnSTKpkYeDFgYASvIZ-LhbzuVnS7PBUllLxu5vyuQROeJS7rRaleg3DGTrqT18xc8RiQdR6Fc3_1g1pQwa3RPS3ze344rM_U2hffP5y4nxv-9zSprf8jw6PASeM1KDvEG2pZTWG6mPOa1MU9-py0hpWyHJDp_AORnEgbpN0cFyCwv6gkxw780hBdSlkLMV0EdVuNBW0E6-Rp5oRrFWSwd72361oJWGCY-aZNztjNo9r1pUwZtFASs8YQUDA2EqSre6BJWzcWIyGRqTGg4WOHcjSx5BFJg0YMxykVmbJsy45E5odk7q-TKHC0K1BJEqdy0OjMtDjBRGBEJlImMR15xdkgb22XS1882YVt119ffpa3KMuGF5IwxuSL1Yb-DWBfxC35VIfwHSNa3B
link.rule.ids 310,311,783,787,792,793,799,27938,55087
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pSA8bf9uDRjW3d1u6MEFBYiELCjXTdqyGQQXBw8K-3bwyMxoPJDvuZLv2WvdfX7_tKyAPniRaKMTM2YaGFhuSWlIkBREOiXdBBEKDAuR-HnZH_PA7GFfK418IAQEE-Axt3i7n8dKHWWCprRL75m7LogByavFrwrVqrlP26TtToNgev-EEi9cBz7fL2H-umFGGjfUL6uwa3bJGZvc4TW33-8mL87xudkvq3QI8O9qHnjFQgq5FNIaa1hvJjRkvb1HdqclLalEizwydwVgaRoGaTNF5sYE57yAW33gxWQE0SOV0CfZK5CW45bWUrZIqmFKu1NN4Z98s5LVVMeFQno3Zr2OxY5bIK1tRzWG4JLRgocENR-NUFqJ31A5VGrlKh4qCBczO25B54jgodxjQXqdZhwJRJ70TCzkk1W2RwQWgSgQilueY7ymQiKhJKOEKmImUeTzi7JDXss8ly65wxKbvr6u_T9-SoM-z3Jr1u_HJNjhFDLHa4zg2p5qs13Jrwnyd3BepfFc-xDQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+25th+International+Conference+on+Pattern+Recognition+%28ICPR%29&rft.atitle=Multi-Task+Learning+for+Calorie+Prediction+on+a+Novel+Large-Scale+Recipe+Dataset+Enriched+with+Nutritional+Information&rft.au=Ruede%2C+Robin&rft.au=Heusser%2C+Verena&rft.au=Frank%2C+Lukas&rft.au=Roitberg%2C+Alina&rft.date=2021-01-10&rft.pub=IEEE&rft.spage=4001&rft.epage=4008&rft_id=info:doi/10.1109%2FICPR48806.2021.9412839&rft.externalDocID=9412839