A GAN Based Multi-Contrast Modalities Medical Image Registration Approach

Most current multi modalities medical image registration approaches are concerned about registering one modality image to another. However, in the real world, medical image registration may be involved in multiple modes, not just two specific modalities. To this end, we propose a multi-contrast moda...

Full description

Saved in:
Bibliographic Details
Published in2020 IEEE International Conference on Image Processing (ICIP) pp. 3000 - 3004
Main Authors Qiao, Jinhao, Lai, Qirong, Li, Ying, Lan, Ting, Yu, Chunyan, Wang, Xiu
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Most current multi modalities medical image registration approaches are concerned about registering one modality image to another. However, in the real world, medical image registration may be involved in multiple modes, not just two specific modalities. To this end, we propose a multi-contrast modalities medical image registration modal (Star-Reg net). It uses a single generator and discriminator for all contrasts of registrations amount several modalities. Furthermore, the proposed approach is trained in an unsupervised way, which alleviates the requirement of manual annotation data. The experiment on the IXI dataset demonstrates the Star-Reg net effectiveness in multi-contrast modalities medical image registration.
AbstractList Most current multi modalities medical image registration approaches are concerned about registering one modality image to another. However, in the real world, medical image registration may be involved in multiple modes, not just two specific modalities. To this end, we propose a multi-contrast modalities medical image registration modal (Star-Reg net). It uses a single generator and discriminator for all contrasts of registrations amount several modalities. Furthermore, the proposed approach is trained in an unsupervised way, which alleviates the requirement of manual annotation data. The experiment on the IXI dataset demonstrates the Star-Reg net effectiveness in multi-contrast modalities medical image registration.
Author Yu, Chunyan
Li, Ying
Lan, Ting
Lai, Qirong
Wang, Xiu
Qiao, Jinhao
Author_xml – sequence: 1
  givenname: Jinhao
  surname: Qiao
  fullname: Qiao, Jinhao
  organization: Fuzhou University,College of Mathematics and Computer Science,Fuzhou,China
– sequence: 2
  givenname: Qirong
  surname: Lai
  fullname: Lai, Qirong
  organization: Fuzhou University,College of Mathematics and Computer Science,Fuzhou,China
– sequence: 3
  givenname: Ying
  surname: Li
  fullname: Li, Ying
  organization: Fuzhou University,College of Mathematics and Computer Science,Fuzhou,China
– sequence: 4
  givenname: Ting
  surname: Lan
  fullname: Lan, Ting
  organization: Fuzhou University,College of Mathematics and Computer Science,Fuzhou,China
– sequence: 5
  givenname: Chunyan
  surname: Yu
  fullname: Yu, Chunyan
  organization: Fuzhou University,College of Mathematics and Computer Science,Fuzhou,China
– sequence: 6
  givenname: Xiu
  surname: Wang
  fullname: Wang, Xiu
  organization: Fuzhou University,College of Mathematics and Computer Science,Fuzhou,China
BookMark eNotj9FKwzAUQKMouM19gSD5gc7cJG2Tx1rcLKwqos_jNrmdka4dTX3w7x24p_NyOHDm7KofemLsHsQKQNiHqqzetMhzs5JCipUFC0LqC7a0uYFcGsiUTbNLNpPKQGJSbW_YPMZvcbJBwYxVBd8UL_wRI3le_3RTSMqhn0aME68Hj12YAkVekw8OO14dcE_8nfYhnpwpDD0vjsdxQPd1y65b7CItz1ywz_XTR_mcbF83VVlskyCFmhLTKmxSo1KP3jWonUenkVrrU5fJHHODxoKnLHNa-caD1UZYEk3ryEGWqgW7--8GItodx3DA8Xd3Pld_nPFP-g
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICIP40778.2020.9191024
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781728163956
1728163951
EISSN 2381-8549
EndPage 3004
ExternalDocumentID 9191024
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
JC5
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-8f3ab5835dadcba4cdac4aef9d5c627a78a891de66c43dbd194809e0bfcec1653
IEDL.DBID RIE
IngestDate Wed Jun 26 19:26:34 EDT 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-8f3ab5835dadcba4cdac4aef9d5c627a78a891de66c43dbd194809e0bfcec1653
PageCount 5
ParticipantIDs ieee_primary_9191024
PublicationCentury 2000
PublicationDate 2020-Oct.
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-Oct.
PublicationDecade 2020
PublicationTitle 2020 IEEE International Conference on Image Processing (ICIP)
PublicationTitleAbbrev ICIP
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020131
Score 2.1858847
Snippet Most current multi modalities medical image registration approaches are concerned about registering one modality image to another. However, in the real world,...
SourceID ieee
SourceType Publisher
StartPage 3000
SubjectTerms Generators
Image registration
Measurement
Medical diagnostic imaging
Medical image registration
Multi-contrast
Multi-modalities
Star-Reg net
Task analysis
Title A GAN Based Multi-Contrast Modalities Medical Image Registration Approach
URI https://ieeexplore.ieee.org/document/9191024
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAFHzUnjxVbcVv9uDRpPnYTbLHWqyN0FLEQm_l7UdExFba9OKvdzdZI4oHbyEQEvaxOzPZN7MA1wYiFeXIPBpHzAoUsw6GNvRTqFBymohUWaE4mSbjOX1YsEULbhovjNa6aj7Tvr2s9vLVWu7sr7I-N-LCYMoe7KWc116tRlzZ3BjnAA4D3s-H-cxoldR2b0WB7578cYRKhSCjDky-3l03jrz6u1L48uNXLON_P-4Aet9ePTJrUOgQWnp1BB1HLombutsu5ANyP5iSW4NailS2W88mU21wW5LJWlk6bkQzcRs3JH8zCw151M9NsC4ZuPjxHsxHd0_DsefOUfBeoiAuvayIUTBDtRQqKZBKhZKiLrhiMolSTDPMeKh0kkgaK1MkTrOA60AUUsswYfExtFfrlT4BwlAVhZFoXBaaMoEcMUtikRnWg2ioyil07cgs3-uojKUblLO_b5_Dvq1O3Rt3Ae1ys9OXBuNLcVUV9xMB2aan
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwGPxUygBTgRbxxgMjSfOwk3gsFdBAU1WolbpVfgUhRIvadOHXYycmCMTAFkWKEvmTfXfxd2eAKw2RElNGHBwGxAgUvQ76JvSTS19QHPFYGqGYjaLBFD_MyKwB17UXRilVNp8p11yWe_lyKTbmV1mXanGhMWULtjWvTqLKrVXLK5McYz3Avke7aT8da7USm_6twHPtsz8OUSkx5K4F2dfbq9aRV3dTcFd8_Apm_O_n7UHn262HxjUO7UNDLQ6gZeklspN33Ya0h-57I3SjcUui0njrmGyqFVsXKFtKQ8i1bEZ26walb3qpQU_quY7WRT0bQN6B6d3tpD9w7EkKzkvghYWT5CHjRJMtyaTgDAvJBGYqp5KIKIhZnLCE-lJFkcCh1GWiOPGo8ngulPAjEh5Cc7FcqCNAhMk81yKNilxhwhllLIlCnmjew5gmK8fQNiMzf6_CMuZ2UE7-vn0JO4NJNpwP09HjKeyaSlWdcmfQLFYbda4Rv-AXZaE_AebRqfI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+IEEE+International+Conference+on+Image+Processing+%28ICIP%29&rft.atitle=A+GAN+Based+Multi-Contrast+Modalities+Medical+Image+Registration+Approach&rft.au=Qiao%2C+Jinhao&rft.au=Lai%2C+Qirong&rft.au=Li%2C+Ying&rft.au=Lan%2C+Ting&rft.date=2020-10-01&rft.pub=IEEE&rft.eissn=2381-8549&rft.spage=3000&rft.epage=3004&rft_id=info:doi/10.1109%2FICIP40778.2020.9191024&rft.externalDocID=9191024