A GAN Based Multi-Contrast Modalities Medical Image Registration Approach
Most current multi modalities medical image registration approaches are concerned about registering one modality image to another. However, in the real world, medical image registration may be involved in multiple modes, not just two specific modalities. To this end, we propose a multi-contrast moda...
Saved in:
Published in | 2020 IEEE International Conference on Image Processing (ICIP) pp. 3000 - 3004 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Most current multi modalities medical image registration approaches are concerned about registering one modality image to another. However, in the real world, medical image registration may be involved in multiple modes, not just two specific modalities. To this end, we propose a multi-contrast modalities medical image registration modal (Star-Reg net). It uses a single generator and discriminator for all contrasts of registrations amount several modalities. Furthermore, the proposed approach is trained in an unsupervised way, which alleviates the requirement of manual annotation data. The experiment on the IXI dataset demonstrates the Star-Reg net effectiveness in multi-contrast modalities medical image registration. |
---|---|
AbstractList | Most current multi modalities medical image registration approaches are concerned about registering one modality image to another. However, in the real world, medical image registration may be involved in multiple modes, not just two specific modalities. To this end, we propose a multi-contrast modalities medical image registration modal (Star-Reg net). It uses a single generator and discriminator for all contrasts of registrations amount several modalities. Furthermore, the proposed approach is trained in an unsupervised way, which alleviates the requirement of manual annotation data. The experiment on the IXI dataset demonstrates the Star-Reg net effectiveness in multi-contrast modalities medical image registration. |
Author | Yu, Chunyan Li, Ying Lan, Ting Lai, Qirong Wang, Xiu Qiao, Jinhao |
Author_xml | – sequence: 1 givenname: Jinhao surname: Qiao fullname: Qiao, Jinhao organization: Fuzhou University,College of Mathematics and Computer Science,Fuzhou,China – sequence: 2 givenname: Qirong surname: Lai fullname: Lai, Qirong organization: Fuzhou University,College of Mathematics and Computer Science,Fuzhou,China – sequence: 3 givenname: Ying surname: Li fullname: Li, Ying organization: Fuzhou University,College of Mathematics and Computer Science,Fuzhou,China – sequence: 4 givenname: Ting surname: Lan fullname: Lan, Ting organization: Fuzhou University,College of Mathematics and Computer Science,Fuzhou,China – sequence: 5 givenname: Chunyan surname: Yu fullname: Yu, Chunyan organization: Fuzhou University,College of Mathematics and Computer Science,Fuzhou,China – sequence: 6 givenname: Xiu surname: Wang fullname: Wang, Xiu organization: Fuzhou University,College of Mathematics and Computer Science,Fuzhou,China |
BookMark | eNotj9FKwzAUQKMouM19gSD5gc7cJG2Tx1rcLKwqos_jNrmdka4dTX3w7x24p_NyOHDm7KofemLsHsQKQNiHqqzetMhzs5JCipUFC0LqC7a0uYFcGsiUTbNLNpPKQGJSbW_YPMZvcbJBwYxVBd8UL_wRI3le_3RTSMqhn0aME68Hj12YAkVekw8OO14dcE_8nfYhnpwpDD0vjsdxQPd1y65b7CItz1ywz_XTR_mcbF83VVlskyCFmhLTKmxSo1KP3jWonUenkVrrU5fJHHODxoKnLHNa-caD1UZYEk3ryEGWqgW7--8GItodx3DA8Xd3Pld_nPFP-g |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICIP40778.2020.9191024 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9781728163956 1728163951 |
EISSN | 2381-8549 |
EndPage | 3004 |
ExternalDocumentID | 9191024 |
Genre | orig-research |
GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI JC5 M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i203t-8f3ab5835dadcba4cdac4aef9d5c627a78a891de66c43dbd194809e0bfcec1653 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:26:34 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-8f3ab5835dadcba4cdac4aef9d5c627a78a891de66c43dbd194809e0bfcec1653 |
PageCount | 5 |
ParticipantIDs | ieee_primary_9191024 |
PublicationCentury | 2000 |
PublicationDate | 2020-Oct. |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-Oct. |
PublicationDecade | 2020 |
PublicationTitle | 2020 IEEE International Conference on Image Processing (ICIP) |
PublicationTitleAbbrev | ICIP |
PublicationYear | 2020 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0020131 |
Score | 2.1858847 |
Snippet | Most current multi modalities medical image registration approaches are concerned about registering one modality image to another. However, in the real world,... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 3000 |
SubjectTerms | Generators Image registration Measurement Medical diagnostic imaging Medical image registration Multi-contrast Multi-modalities Star-Reg net Task analysis |
Title | A GAN Based Multi-Contrast Modalities Medical Image Registration Approach |
URI | https://ieeexplore.ieee.org/document/9191024 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAFHzUnjxVbcVv9uDRpPnYTbLHWqyN0FLEQm_l7UdExFba9OKvdzdZI4oHbyEQEvaxOzPZN7MA1wYiFeXIPBpHzAoUsw6GNvRTqFBymohUWaE4mSbjOX1YsEULbhovjNa6aj7Tvr2s9vLVWu7sr7I-N-LCYMoe7KWc116tRlzZ3BjnAA4D3s-H-cxoldR2b0WB7578cYRKhSCjDky-3l03jrz6u1L48uNXLON_P-4Aet9ePTJrUOgQWnp1BB1HLombutsu5ANyP5iSW4NailS2W88mU21wW5LJWlk6bkQzcRs3JH8zCw151M9NsC4ZuPjxHsxHd0_DsefOUfBeoiAuvayIUTBDtRQqKZBKhZKiLrhiMolSTDPMeKh0kkgaK1MkTrOA60AUUsswYfExtFfrlT4BwlAVhZFoXBaaMoEcMUtikRnWg2ioyil07cgs3-uojKUblLO_b5_Dvq1O3Rt3Ae1ys9OXBuNLcVUV9xMB2aan |
link.rule.ids | 310,311,783,787,792,793,799,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwGPxUygBTgRbxxgMjSfOwk3gsFdBAU1WolbpVfgUhRIvadOHXYycmCMTAFkWKEvmTfXfxd2eAKw2RElNGHBwGxAgUvQ76JvSTS19QHPFYGqGYjaLBFD_MyKwB17UXRilVNp8p11yWe_lyKTbmV1mXanGhMWULtjWvTqLKrVXLK5McYz3Avke7aT8da7USm_6twHPtsz8OUSkx5K4F2dfbq9aRV3dTcFd8_Apm_O_n7UHn262HxjUO7UNDLQ6gZeklspN33Ya0h-57I3SjcUui0njrmGyqFVsXKFtKQ8i1bEZ26walb3qpQU_quY7WRT0bQN6B6d3tpD9w7EkKzkvghYWT5CHjRJMtyaTgDAvJBGYqp5KIKIhZnLCE-lJFkcCh1GWiOPGo8ngulPAjEh5Cc7FcqCNAhMk81yKNilxhwhllLIlCnmjew5gmK8fQNiMzf6_CMuZ2UE7-vn0JO4NJNpwP09HjKeyaSlWdcmfQLFYbda4Rv-AXZaE_AebRqfI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+IEEE+International+Conference+on+Image+Processing+%28ICIP%29&rft.atitle=A+GAN+Based+Multi-Contrast+Modalities+Medical+Image+Registration+Approach&rft.au=Qiao%2C+Jinhao&rft.au=Lai%2C+Qirong&rft.au=Li%2C+Ying&rft.au=Lan%2C+Ting&rft.date=2020-10-01&rft.pub=IEEE&rft.eissn=2381-8549&rft.spage=3000&rft.epage=3004&rft_id=info:doi/10.1109%2FICIP40778.2020.9191024&rft.externalDocID=9191024 |