A Lesion Classification Method Using Deep Learning Based on NICE Classification for Computer-Aided Diagnosis System in Colorectal NBI Endoscopy

Currently, video image diagnosis by NBI (Narrow Band Imaging) is commonly used for colonoscopy. The purpose of this paper is to develop a CAD (computer-aided diagnosis) system that can reduce the variability of diagnosis due to differences in clinical doctor's experience by presenting quantitat...

Full description

Saved in:
Bibliographic Details
Published in2021 36th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC) pp. 1 - 4
Main Authors Katayama, Daisuke, Michida, Ryuichi, Izakura, Seiji, Wu, Yongfei, Koide, Tetsushi, Tanaka, Shinji, Okamoto, Yuki, Mieno, Hiroshi, Tamaki, Toru, Yoshida, Shigeto
Format Conference Proceeding
LanguageEnglish
Published IEEE 27.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Currently, video image diagnosis by NBI (Narrow Band Imaging) is commonly used for colonoscopy. The purpose of this paper is to develop a CAD (computer-aided diagnosis) system that can reduce the variability of diagnosis due to differences in clinical doctor's experience by presenting quantitative inference results to the clinical doctor. As a part of this system development, we create a classifier that classifies lesion images into NICE (NBI International Colorectal Endoscopic) classification using deep learning. We can achieve to develop a CNN (Convolutional Neural Network) based classifier in which five performance indicators (Accuracy, Recall, Specificity, PPV, and NPV) are satisfied more than 90 % quality.
AbstractList Currently, video image diagnosis by NBI (Narrow Band Imaging) is commonly used for colonoscopy. The purpose of this paper is to develop a CAD (computer-aided diagnosis) system that can reduce the variability of diagnosis due to differences in clinical doctor's experience by presenting quantitative inference results to the clinical doctor. As a part of this system development, we create a classifier that classifies lesion images into NICE (NBI International Colorectal Endoscopic) classification using deep learning. We can achieve to develop a CNN (Convolutional Neural Network) based classifier in which five performance indicators (Accuracy, Recall, Specificity, PPV, and NPV) are satisfied more than 90 % quality.
Author Tamaki, Toru
Katayama, Daisuke
Tanaka, Shinji
Okamoto, Yuki
Yoshida, Shigeto
Michida, Ryuichi
Izakura, Seiji
Koide, Tetsushi
Wu, Yongfei
Mieno, Hiroshi
Author_xml – sequence: 1
  givenname: Daisuke
  surname: Katayama
  fullname: Katayama, Daisuke
  email: katayama-daisuke@hiroshima-u.ac.jp
  organization: Research Institute for Nanodevice and Bio Systems, Hiroshima University
– sequence: 2
  givenname: Ryuichi
  surname: Michida
  fullname: Michida, Ryuichi
  organization: Research Institute for Nanodevice and Bio Systems, Hiroshima University
– sequence: 3
  givenname: Seiji
  surname: Izakura
  fullname: Izakura, Seiji
  organization: Research Institute for Nanodevice and Bio Systems, Hiroshima University
– sequence: 4
  givenname: Yongfei
  surname: Wu
  fullname: Wu, Yongfei
  organization: Research Institute for Nanodevice and Bio Systems, Hiroshima University
– sequence: 5
  givenname: Tetsushi
  surname: Koide
  fullname: Koide, Tetsushi
  email: koide@hiroshima-u.ac.jp
  organization: Research Institute for Nanodevice and Bio Systems, Hiroshima University
– sequence: 6
  givenname: Shinji
  surname: Tanaka
  fullname: Tanaka, Shinji
  organization: Hiroshima University Hospital,Department of Endoscopy
– sequence: 7
  givenname: Yuki
  surname: Okamoto
  fullname: Okamoto, Yuki
  organization: Hiroshima University Hospital,Department of Endoscopy
– sequence: 8
  givenname: Hiroshi
  surname: Mieno
  fullname: Mieno, Hiroshi
  organization: Medical Corporation JR Hiroshima Hospital,Department of Gastroenterology
– sequence: 9
  givenname: Toru
  surname: Tamaki
  fullname: Tamaki, Toru
  organization: Nagoya Institute of Technology,Dept. of Computer Science
– sequence: 10
  givenname: Shigeto
  surname: Yoshida
  fullname: Yoshida, Shigeto
  organization: Medical Corporation JR Hiroshima Hospital,Department of Gastroenterology
BookMark eNpdkLFOwzAQho0EA5Q-AYvFnhDbsROPqVsgUihD27lyknOxlNhRHIY-Ba9MKjox_fqk7-50_wO6dd4BQs8kiQlJ5Eu5V5HaKcUpyUhME0piyRNCRXqDljLLiRA8ZZwzcY9-ClxBsN5h1ekQrLGNni74AdOXb_EhWHfCa4Bh9vToLrTSAVo8O9tSbf7PGT9i5fvhe4IxKmw7m2urT84HG_DuHCbosZ2v-c6P0Ey6w9tViTeu9aHxw_kR3RndBVhec4EOr5u9eo-qz7dSFVVkacKmKJc5MyTNEsaopLSWjTC1ZNLwXAiTcp1Dq2XeCJj_BaE1MWkNYCiwlHLRsAV6-ttrAeA4jLbX4_l4rYn9Ao_bZDs
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ITC-CSCC52171.2021.9501264
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Explore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665435536
1665435534
EndPage 4
ExternalDocumentID 9501264
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-8983f1470332922b9c6fb939f5866f45a8eda98c6e978e6aa1f4beef2e34256c3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:01 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-8983f1470332922b9c6fb939f5866f45a8eda98c6e978e6aa1f4beef2e34256c3
PageCount 4
ParticipantIDs ieee_primary_9501264
PublicationCentury 2000
PublicationDate 2021-June-27
PublicationDateYYYYMMDD 2021-06-27
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-June-27
  day: 27
PublicationDecade 2020
PublicationTitle 2021 36th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC)
PublicationTitleAbbrev ITC-CSCC
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8290199
Snippet Currently, video image diagnosis by NBI (Narrow Band Imaging) is commonly used for colonoscopy. The purpose of this paper is to develop a CAD (computer-aided...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms CAD (Computer Aided Diagnosis) System
Computers
Data preprocessing
Deep learning
Design automation
Endoscopes
Imaging
Medical services
NBI (Narrow Band Imaging)
NICE (NBI International Colorectal Endoscopic)
Title A Lesion Classification Method Using Deep Learning Based on NICE Classification for Computer-Aided Diagnosis System in Colorectal NBI Endoscopy
URI https://ieeexplore.ieee.org/document/9501264
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6Akyc1YPydHjzasbVdtx5hQMAIMRESbmTrXg0xAaLjoP-E_7JtNzASD96WpU2b163vvfZ734fQna-1ChhwkksaEc60IKkUQDKplHEQNFNOOmE8EcMZf5iH8xq639fCAIADn4FnH91dfr5WW3tU1pah2U4Fr6N67NOyVqviEQ182R5NE5I8J4lxSJHN_GjgVR1-Kac4xzE4RuPdkCVe5NXbFpmnPg_YGP87pxPU-inRw09753OKarBqoq8OfgR7_IWd1qVFATnD47HTicYOH4B7ABtc8aq-4K5xYzk2bSajpH_Yz0S0eKf7QDrL3LTsldi85Tsuyc7x0oy2ttNWJo7Hk-4I91f52la7fLTQbNCfJkNSKS6QJfVZQWIZMx1wswswKik1CyZ0JpnUYSyE5mEaQ57KWAkwySeINA00zwA0BWb-faHYGWqs1is4R1jEUoVBnPsMIm5JzaxQZRDkKg25SZr0BWpaYy42JanGorLj5d-vr9CRXVCL0aLRNWoUb1u4MdFAkd26z-AbgIC2gg
link.rule.ids 310,311,786,790,795,796,802,27947,55098
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pSA8bf9uDRjq3tynqEAQEFYiIk3MjWvRpiAkThoP-E_7JtNzASD96WpU2b163vvfZ734fQna-1ChhwkklaJ5xpQRIpgKRSKeMgaKqcdMJgKLpj_jAJJyV0v62FAQAHPgPPPrq7_Gyh1vaorCZDs50Kvof2TVwto7xaq2ASDXxZ641iEj_HsXFJdZv70cAruvzSTnGuo3OEBptBc8TIq7depZ763OFj_O-sjlH1p0gPP23dzwkqwbyCvhq4D_YADDu1S4sDcqbHA6cUjR1CALcAlrhgVn3BTePIMmzaDHtxe7efiWnxRvmBNGaZadnK0Xmzd5zTneOZGW1hp61MJI-HzR5uz7OFrXf5qKJxpz2Ku6TQXCAz6rMViWTEdMDNPsCopNQsmdCpZFKHkRCah0kEWSIjJcCknyCSJNA8BdAUmPn7hWKnqDxfzOEMYRFJFQZR5jOoc0trZqUqgyBTSchN2qTPUcUac7rMaTWmhR0v_n59iw66o0F_2u8NHy_RoV1ci9ii9StUXr2t4drEBqv0xn0S31tAud8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+36th+International+Technical+Conference+on+Circuits%2FSystems%2C+Computers+and+Communications+%28ITC-CSCC%29&rft.atitle=A+Lesion+Classification+Method+Using+Deep+Learning+Based+on+NICE+Classification+for+Computer-Aided+Diagnosis+System+in+Colorectal+NBI+Endoscopy&rft.au=Katayama%2C+Daisuke&rft.au=Michida%2C+Ryuichi&rft.au=Izakura%2C+Seiji&rft.au=Wu%2C+Yongfei&rft.date=2021-06-27&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FITC-CSCC52171.2021.9501264&rft.externalDocID=9501264