Low-Dose CT Denoising Using A Structure-Preserving Kernel Prediction Network
Low-dose CT has been a key diagnostic imaging modality to reduce the potential risk of radiation overdose to patient health. Despite recent advances, CNN-based approaches typically apply filters in a spatially invariant way and adopt similar pixel-level losses, which treat all regions of the CT imag...
Saved in:
Published in | 2021 IEEE International Conference on Image Processing (ICIP) pp. 1639 - 1643 |
---|---|
Main Authors | , , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
19.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Low-dose CT has been a key diagnostic imaging modality to reduce the potential risk of radiation overdose to patient health. Despite recent advances, CNN-based approaches typically apply filters in a spatially invariant way and adopt similar pixel-level losses, which treat all regions of the CT image equally and can be inefficient when fine-grained structures coexist with non-uniformly distributed noises. To address this issue, we propose a Structure-preserving Kernel Prediction Network (StructKPN) that combines the kernel prediction network with a structure-aware loss function that utilizes the pixel gradient statistics and guides the model towards spatially-variant filters that enhance noise removal, prevent over-smoothing and preserve detailed structures for different regions in CT imaging. Extensive experiments demonstrated that our approach achieved superior performance on both synthetic and non-synthetic datasets, and better preserves structures that are highly desired in clinical screening and low-dose protocol optimization. |
---|---|
AbstractList | Low-dose CT has been a key diagnostic imaging modality to reduce the potential risk of radiation overdose to patient health. Despite recent advances, CNN-based approaches typically apply filters in a spatially invariant way and adopt similar pixel-level losses, which treat all regions of the CT image equally and can be inefficient when fine-grained structures coexist with non-uniformly distributed noises. To address this issue, we propose a Structure-preserving Kernel Prediction Network (StructKPN) that combines the kernel prediction network with a structure-aware loss function that utilizes the pixel gradient statistics and guides the model towards spatially-variant filters that enhance noise removal, prevent over-smoothing and preserve detailed structures for different regions in CT imaging. Extensive experiments demonstrated that our approach achieved superior performance on both synthetic and non-synthetic datasets, and better preserves structures that are highly desired in clinical screening and low-dose protocol optimization. |
Author | Wang, Daoye Zhou, Mu Ye, Zhaoxiang Liu, Ying Ren, Jimmy Zhang, Yuwei Xu, Lu Wei, Jingwei |
Author_xml | – sequence: 1 givenname: Lu surname: Xu fullname: Xu, Lu organization: The Chinese University of Hong Kong – sequence: 2 givenname: Yuwei surname: Zhang fullname: Zhang, Yuwei organization: Tianjin Medical University Cancer Institute and Hospital – sequence: 3 givenname: Ying surname: Liu fullname: Liu, Ying organization: Tianjin Medical University Cancer Institute and Hospital – sequence: 4 givenname: Daoye surname: Wang fullname: Wang, Daoye organization: ETH Zurich – sequence: 5 givenname: Mu surname: Zhou fullname: Zhou, Mu organization: SenseBrain Technology Limited LLC – sequence: 6 givenname: Jimmy surname: Ren fullname: Ren, Jimmy email: jimmy.sj.ren@gmail.com organization: SenseTime Research – sequence: 7 givenname: Jingwei surname: Wei fullname: Wei, Jingwei email: Weijingwei2014@ia.ac.cn organization: Institute of Automation, Chinese Academy of Sciences,Key Laboratory of Molecular Imaging – sequence: 8 givenname: Zhaoxiang surname: Ye fullname: Ye, Zhaoxiang email: yezhaoxiang@163.com organization: Tianjin Medical University Cancer Institute and Hospital |
BookMark | eNotj11LwzAUhqMouE5_gSD9A5k5J03aXI7Oj2LRgdv1SJpTic5W0s7hv_drN88Lz8ULT8JOur4jxq5AzACEua7KapmhwWKGAmFmlNA6N0csAa1VlgEoOGYTlAXwQmXmjCXD8CoECpAwYXXd7_miHygtV-mCuj4MoXtJ13-cp89j3DXjLhJfRhoofv7qB4odbdMf40Mzhr5LH2nc9_HtnJ22djvQxWGnbH17syrvef10V5XzmgcUcuQFkJMOrYPGauvyFqXSEg1IJ3XjyRhEBJJNprRH57X3AnIvsFDU5t7KKbv8_w1EtPmI4d3Gr82hXH4D_5RPzA |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICIP42928.2021.9506679 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEL IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEL url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 1665441151 9781665441155 |
EISSN | 2381-8549 |
EndPage | 1643 |
ExternalDocumentID | 9506679 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI JC5 M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i203t-81eb3b2ab1ca6ab7f235632913b36cde992221e3c456d2bd6dd017d0285ef7da3 |
IEDL.DBID | RIE |
IngestDate | Mon Nov 04 11:49:46 EST 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-81eb3b2ab1ca6ab7f235632913b36cde992221e3c456d2bd6dd017d0285ef7da3 |
PageCount | 5 |
ParticipantIDs | ieee_primary_9506679 |
PublicationCentury | 2000 |
PublicationDate | 2021-Sept.-19 |
PublicationDateYYYYMMDD | 2021-09-19 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-Sept.-19 day: 19 |
PublicationDecade | 2020 |
PublicationTitle | 2021 IEEE International Conference on Image Processing (ICIP) |
PublicationTitleAbbrev | ICIP |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0020131 |
Score | 2.2222269 |
Snippet | Low-dose CT has been a key diagnostic imaging modality to reduce the potential risk of radiation overdose to patient health. Despite recent advances, CNN-based... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1639 |
SubjectTerms | Computed tomography Conferences Image Denoising Image processing Imaging Kernel Prediction Network Low-dose CT Noise reduction Predictive models Protocols |
Title | Low-Dose CT Denoising Using A Structure-Preserving Kernel Prediction Network |
URI | https://ieeexplore.ieee.org/document/9506679 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6AkydUMP5ODx7tWNut0KMBDSgQEiHhRtb2kRDNZvgRE_96-7aJ0XjwtnRpt_alfa_t932PkJulNNp5180iF3dYxJ1hxjsCFnNlQIF_I5CcPBqr_ix6nMfzCrndc2EAIAefQYCP-V2-y-wOj8paOkZIpq6Salvrgqu131yhbkzJAOahbg26gwlmYkL0luBBWfNHCpXcgzzUyejr2wVw5CXYbU1gP37JMv735w5J85urRyd7L3REKpAek3oZXNJy6m4aZDjM3lkv2wDtTmkP0myFpwQ0hwzQO_qc68ju1sAQlIELiC9-gnUKr755vM1BC9JxgRpvktnD_bTbZ2UqBbYSodyyDvebZiMSw22iEtNeChkrKTSXRirrANVpBQdpfTzlhHHKOT9VnQ8-Yli2XSJPSC3NUjgl1IXWSauSWOkoCgF8AAPa-NaSjrYgl2ekgYOzeCvUMhbluJz_XXxBDtBAiMDg-pLUfGfhyrv5rbnO7fsJ7qqoAA |
link.rule.ids | 310,311,783,787,792,793,799,23942,23943,25152,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pCBeNve_Box9puZT0akIAMQiIk3MjaPhKi2Qw_YuJfb7tNjMaDt6VLu7Uv7Xttv-97CN0tuJLGum4SmDAiATWKKOsISEiFAgH2DXPk5OFI9KbB0yycVdD9jgsDADn4DDz3mN_lm0xv3VFZU4YOkin30L6NqyNRsLV22yunHFNygKkvm_12f-xyMTn8FqNeWfdHEpXch3RraPj19QI68uJtN8rTH7-EGf_7e0eo8c3Ww-OdHzpGFUhPUK0ML3E5edd1FMfZO-lka8DtCe5Ami3dOQHOQQP4AT_nSrLbFRAHy3BLiC0ewCqFV9u8u89xNsSjAjfeQNPu46TdI2UyBbJkPt-QiNpts2KJojoRiWotGA8FZ5JyxYU24PRpGQWubURlmDLCGDtZjQ0_Qli0TMJPUTXNUjhD2PjacC2SUMgg8AFsCANS2daSSGrgi3NUd4Mzfyv0MubluFz8XXyLDnqTYTyP-6PBJTp0xnJ4DCqvUNV2HK6t09-om9zWn-XQq0s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2021+IEEE+International+Conference+on+Image+Processing+%28ICIP%29&rft.atitle=Low-Dose+CT+Denoising+Using+A+Structure-Preserving+Kernel+Prediction+Network&rft.au=Xu%2C+Lu&rft.au=Zhang%2C+Yuwei&rft.au=Liu%2C+Ying&rft.au=Wang%2C+Daoye&rft.date=2021-09-19&rft.pub=IEEE&rft.eissn=2381-8549&rft.spage=1639&rft.epage=1643&rft_id=info:doi/10.1109%2FICIP42928.2021.9506679&rft.externalDocID=9506679 |