Low-Dose CT Denoising Using A Structure-Preserving Kernel Prediction Network

Low-dose CT has been a key diagnostic imaging modality to reduce the potential risk of radiation overdose to patient health. Despite recent advances, CNN-based approaches typically apply filters in a spatially invariant way and adopt similar pixel-level losses, which treat all regions of the CT imag...

Full description

Saved in:
Bibliographic Details
Published in2021 IEEE International Conference on Image Processing (ICIP) pp. 1639 - 1643
Main Authors Xu, Lu, Zhang, Yuwei, Liu, Ying, Wang, Daoye, Zhou, Mu, Ren, Jimmy, Wei, Jingwei, Ye, Zhaoxiang
Format Conference Proceeding
LanguageEnglish
Published IEEE 19.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Low-dose CT has been a key diagnostic imaging modality to reduce the potential risk of radiation overdose to patient health. Despite recent advances, CNN-based approaches typically apply filters in a spatially invariant way and adopt similar pixel-level losses, which treat all regions of the CT image equally and can be inefficient when fine-grained structures coexist with non-uniformly distributed noises. To address this issue, we propose a Structure-preserving Kernel Prediction Network (StructKPN) that combines the kernel prediction network with a structure-aware loss function that utilizes the pixel gradient statistics and guides the model towards spatially-variant filters that enhance noise removal, prevent over-smoothing and preserve detailed structures for different regions in CT imaging. Extensive experiments demonstrated that our approach achieved superior performance on both synthetic and non-synthetic datasets, and better preserves structures that are highly desired in clinical screening and low-dose protocol optimization.
AbstractList Low-dose CT has been a key diagnostic imaging modality to reduce the potential risk of radiation overdose to patient health. Despite recent advances, CNN-based approaches typically apply filters in a spatially invariant way and adopt similar pixel-level losses, which treat all regions of the CT image equally and can be inefficient when fine-grained structures coexist with non-uniformly distributed noises. To address this issue, we propose a Structure-preserving Kernel Prediction Network (StructKPN) that combines the kernel prediction network with a structure-aware loss function that utilizes the pixel gradient statistics and guides the model towards spatially-variant filters that enhance noise removal, prevent over-smoothing and preserve detailed structures for different regions in CT imaging. Extensive experiments demonstrated that our approach achieved superior performance on both synthetic and non-synthetic datasets, and better preserves structures that are highly desired in clinical screening and low-dose protocol optimization.
Author Wang, Daoye
Zhou, Mu
Ye, Zhaoxiang
Liu, Ying
Ren, Jimmy
Zhang, Yuwei
Xu, Lu
Wei, Jingwei
Author_xml – sequence: 1
  givenname: Lu
  surname: Xu
  fullname: Xu, Lu
  organization: The Chinese University of Hong Kong
– sequence: 2
  givenname: Yuwei
  surname: Zhang
  fullname: Zhang, Yuwei
  organization: Tianjin Medical University Cancer Institute and Hospital
– sequence: 3
  givenname: Ying
  surname: Liu
  fullname: Liu, Ying
  organization: Tianjin Medical University Cancer Institute and Hospital
– sequence: 4
  givenname: Daoye
  surname: Wang
  fullname: Wang, Daoye
  organization: ETH Zurich
– sequence: 5
  givenname: Mu
  surname: Zhou
  fullname: Zhou, Mu
  organization: SenseBrain Technology Limited LLC
– sequence: 6
  givenname: Jimmy
  surname: Ren
  fullname: Ren, Jimmy
  email: jimmy.sj.ren@gmail.com
  organization: SenseTime Research
– sequence: 7
  givenname: Jingwei
  surname: Wei
  fullname: Wei, Jingwei
  email: Weijingwei2014@ia.ac.cn
  organization: Institute of Automation, Chinese Academy of Sciences,Key Laboratory of Molecular Imaging
– sequence: 8
  givenname: Zhaoxiang
  surname: Ye
  fullname: Ye, Zhaoxiang
  email: yezhaoxiang@163.com
  organization: Tianjin Medical University Cancer Institute and Hospital
BookMark eNotj11LwzAUhqMouE5_gSD9A5k5J03aXI7Oj2LRgdv1SJpTic5W0s7hv_drN88Lz8ULT8JOur4jxq5AzACEua7KapmhwWKGAmFmlNA6N0csAa1VlgEoOGYTlAXwQmXmjCXD8CoECpAwYXXd7_miHygtV-mCuj4MoXtJ13-cp89j3DXjLhJfRhoofv7qB4odbdMf40Mzhr5LH2nc9_HtnJ22djvQxWGnbH17syrvef10V5XzmgcUcuQFkJMOrYPGauvyFqXSEg1IJ3XjyRhEBJJNprRH57X3AnIvsFDU5t7KKbv8_w1EtPmI4d3Gr82hXH4D_5RPzA
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICIP42928.2021.9506679
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEL
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEL
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 1665441151
9781665441155
EISSN 2381-8549
EndPage 1643
ExternalDocumentID 9506679
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
JC5
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-81eb3b2ab1ca6ab7f235632913b36cde992221e3c456d2bd6dd017d0285ef7da3
IEDL.DBID RIE
IngestDate Mon Nov 04 11:49:46 EST 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-81eb3b2ab1ca6ab7f235632913b36cde992221e3c456d2bd6dd017d0285ef7da3
PageCount 5
ParticipantIDs ieee_primary_9506679
PublicationCentury 2000
PublicationDate 2021-Sept.-19
PublicationDateYYYYMMDD 2021-09-19
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-Sept.-19
  day: 19
PublicationDecade 2020
PublicationTitle 2021 IEEE International Conference on Image Processing (ICIP)
PublicationTitleAbbrev ICIP
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020131
Score 2.2222269
Snippet Low-dose CT has been a key diagnostic imaging modality to reduce the potential risk of radiation overdose to patient health. Despite recent advances, CNN-based...
SourceID ieee
SourceType Publisher
StartPage 1639
SubjectTerms Computed tomography
Conferences
Image Denoising
Image processing
Imaging
Kernel Prediction Network
Low-dose CT
Noise reduction
Predictive models
Protocols
Title Low-Dose CT Denoising Using A Structure-Preserving Kernel Prediction Network
URI https://ieeexplore.ieee.org/document/9506679
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6AkydUMP5ODx7tWNut0KMBDSgQEiHhRtb2kRDNZvgRE_96-7aJ0XjwtnRpt_alfa_t932PkJulNNp5180iF3dYxJ1hxjsCFnNlQIF_I5CcPBqr_ix6nMfzCrndc2EAIAefQYCP-V2-y-wOj8paOkZIpq6Salvrgqu131yhbkzJAOahbg26gwlmYkL0luBBWfNHCpXcgzzUyejr2wVw5CXYbU1gP37JMv735w5J85urRyd7L3REKpAek3oZXNJy6m4aZDjM3lkv2wDtTmkP0myFpwQ0hwzQO_qc68ju1sAQlIELiC9-gnUKr755vM1BC9JxgRpvktnD_bTbZ2UqBbYSodyyDvebZiMSw22iEtNeChkrKTSXRirrANVpBQdpfTzlhHHKOT9VnQ8-Yli2XSJPSC3NUjgl1IXWSauSWOkoCgF8AAPa-NaSjrYgl2ekgYOzeCvUMhbluJz_XXxBDtBAiMDg-pLUfGfhyrv5rbnO7fsJ7qqoAA
link.rule.ids 310,311,783,787,792,793,799,23942,23943,25152,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pCBeNve_Box9puZT0akIAMQiIk3MjaPhKi2Qw_YuJfb7tNjMaDt6VLu7Uv7Xttv-97CN0tuJLGum4SmDAiATWKKOsISEiFAgH2DXPk5OFI9KbB0yycVdD9jgsDADn4DDz3mN_lm0xv3VFZU4YOkin30L6NqyNRsLV22yunHFNygKkvm_12f-xyMTn8FqNeWfdHEpXch3RraPj19QI68uJtN8rTH7-EGf_7e0eo8c3Ww-OdHzpGFUhPUK0ML3E5edd1FMfZO-lka8DtCe5Ami3dOQHOQQP4AT_nSrLbFRAHy3BLiC0ewCqFV9u8u89xNsSjAjfeQNPu46TdI2UyBbJkPt-QiNpts2KJojoRiWotGA8FZ5JyxYU24PRpGQWubURlmDLCGDtZjQ0_Qli0TMJPUTXNUjhD2PjacC2SUMgg8AFsCANS2daSSGrgi3NUd4Mzfyv0MubluFz8XXyLDnqTYTyP-6PBJTp0xnJ4DCqvUNV2HK6t09-om9zWn-XQq0s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2021+IEEE+International+Conference+on+Image+Processing+%28ICIP%29&rft.atitle=Low-Dose+CT+Denoising+Using+A+Structure-Preserving+Kernel+Prediction+Network&rft.au=Xu%2C+Lu&rft.au=Zhang%2C+Yuwei&rft.au=Liu%2C+Ying&rft.au=Wang%2C+Daoye&rft.date=2021-09-19&rft.pub=IEEE&rft.eissn=2381-8549&rft.spage=1639&rft.epage=1643&rft_id=info:doi/10.1109%2FICIP42928.2021.9506679&rft.externalDocID=9506679