Decentralized Spatially Constrained Source-Based Morphometry

There is growing interest in extracting multivariate patterns (covarying networks) from structural magnetic resonance imaging (sMRI) data to analyze brain morphometry. Constrained source-based morphometry (constrained SBM) is a hybrid approach which provides a fully automated strategy for extracting...

Full description

Saved in:
Bibliographic Details
Published inProceedings (International Symposium on Biomedical Imaging) pp. 1 - 5
Main Authors Saha, Debbrata K., Silva, Rogers F., Baker, Bradley T., Calhoun, Vince D.
Format Conference Proceeding
LanguageEnglish
Published IEEE 28.03.2022
Subjects
Online AccessGet full text
ISSN1945-8452
DOI10.1109/ISBI52829.2022.9761419

Cover

Loading…
Abstract There is growing interest in extracting multivariate patterns (covarying networks) from structural magnetic resonance imaging (sMRI) data to analyze brain morphometry. Constrained source-based morphometry (constrained SBM) is a hybrid approach which provides a fully automated strategy for extracting subject-specific parameters characterizing gray matter networks. In constrained SBM, constrained independent component analysis (ICA) is used to compute maximally independent sources and statistical analysis is used to identify sources significantly associated with variables of interest. However, constrained SBM is built on the assumption that the data are locally accessible. As such, it cannot take advantage of decentralized (i.e., federated) data. While open data repositories have grown in recent years, there are various reasons (e.g., privacy concerns for rare disease data, institutional or IRB policies, etc.) that restrict a large amount of existing data to local access only. To overcome this limitation, we introduce a novel approach: decentralized constrained source-based morphometry (dcSBM). In our approach, data samples are located at different sites and each site operates the constrained ICA in a distributed manner. Finally, a master node simply aggregates result estimates from each local site and runs the statistical analysis centrally. We apply our method to UK Biobank sMRI data and validate our results by comparing to centralized constrained SBM results.
AbstractList There is growing interest in extracting multivariate patterns (covarying networks) from structural magnetic resonance imaging (sMRI) data to analyze brain morphometry. Constrained source-based morphometry (constrained SBM) is a hybrid approach which provides a fully automated strategy for extracting subject-specific parameters characterizing gray matter networks. In constrained SBM, constrained independent component analysis (ICA) is used to compute maximally independent sources and statistical analysis is used to identify sources significantly associated with variables of interest. However, constrained SBM is built on the assumption that the data are locally accessible. As such, it cannot take advantage of decentralized (i.e., federated) data. While open data repositories have grown in recent years, there are various reasons (e.g., privacy concerns for rare disease data, institutional or IRB policies, etc.) that restrict a large amount of existing data to local access only. To overcome this limitation, we introduce a novel approach: decentralized constrained source-based morphometry (dcSBM). In our approach, data samples are located at different sites and each site operates the constrained ICA in a distributed manner. Finally, a master node simply aggregates result estimates from each local site and runs the statistical analysis centrally. We apply our method to UK Biobank sMRI data and validate our results by comparing to centralized constrained SBM results.
Author Saha, Debbrata K.
Baker, Bradley T.
Calhoun, Vince D.
Silva, Rogers F.
Author_xml – sequence: 1
  givenname: Debbrata K.
  surname: Saha
  fullname: Saha, Debbrata K.
  organization: Georgia State University, Georgia Institute of Technology, and Emory University,Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS),Atlanta,GA,30303
– sequence: 2
  givenname: Rogers F.
  surname: Silva
  fullname: Silva, Rogers F.
  organization: Georgia State University, Georgia Institute of Technology, and Emory University,Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS),Atlanta,GA,30303
– sequence: 3
  givenname: Bradley T.
  surname: Baker
  fullname: Baker, Bradley T.
  organization: Georgia State University, Georgia Institute of Technology, and Emory University,Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS),Atlanta,GA,30303
– sequence: 4
  givenname: Vince D.
  surname: Calhoun
  fullname: Calhoun, Vince D.
  organization: Georgia State University, Georgia Institute of Technology, and Emory University,Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS),Atlanta,GA,30303
BookMark eNotj8tOwzAURA0Cibb0C5BQfyDB176OY4kNTXlEKmJRWFd2ci2M0iRywqJ8PUF0NkdzFiPNnF20XUuM3QJPAbi5K3frUolcmFRwIVKjM0AwZ2wOWaZQGCHFOZuBQZXkqMQVWw7DF5-iESXHGbvfUEXtGG0Tfqhe7Xo7Bts0x1XRtcOkQ_tnu-9YUbK2w1Reu9h_dgca4_GaXXrbDLQ8ccE-nh7fi5dk-_ZcFg_bJAgux0STqw1INBrIW48OsirXmQcgDtqQzb3Tysvccaq0VxVybUlax2WNTjq5YDf_u4GI9n0MBxuP-9NZ-Qvn1Uv6
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISBI52829.2022.9761419
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1665429232
9781665429238
EISSN 1945-8452
EndPage 5
ExternalDocumentID 9761419
Genre orig-research
GroupedDBID 23N
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i203t-7ebd9134971efaf4b16c876f11e0179ea8fb75f38b0ec7f5c407ae3ab03d4b3b3
IEDL.DBID RIE
IngestDate Fri Jul 18 03:48:16 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-7ebd9134971efaf4b16c876f11e0179ea8fb75f38b0ec7f5c407ae3ab03d4b3b3
PageCount 5
ParticipantIDs ieee_primary_9761419
PublicationCentury 2000
PublicationDate 2022-March-28
PublicationDateYYYYMMDD 2022-03-28
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-March-28
  day: 28
PublicationDecade 2020
PublicationTitle Proceedings (International Symposium on Biomedical Imaging)
PublicationTitleAbbrev ISBI
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000744304
Score 2.1927633
Snippet There is growing interest in extracting multivariate patterns (covarying networks) from structural magnetic resonance imaging (sMRI) data to analyze brain...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Distributed databases
Federated System
Glass
Grey matter
Independent component analysis
Loading
Magnetic resonance imaging
SBM
sMRI
Statistical analysis
UK Biobank
Title Decentralized Spatially Constrained Source-Based Morphometry
URI https://ieeexplore.ieee.org/document/9761419
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFB5qT3pxacWdHDyaNMlMmgQ8VS2tUBG00FuZ5Q0UNZGSHtpf73vTWBc8eAsDIcO8mXzzve1j7FJHIEXGpW9zQ66bLKIjBb4UXZMo5ESJU4kYPXQHY3E_SSYNdrWphQEAl3wGAT26WL4p9YJcZR2EzkhQj88tJG7rWq2NPwWhUCA1r4uAozDvDJ96w4QChcgC4zioX_6houJApL_LRp-fX-eOvASLSgV69asz43_nt8faX-V63uMGiPZZA4oDtvOt02CLXd9CnYY5W4HxSIgYN97r0iPBTicTQaPOke_3ENiMNyrRAuUbVPNlm437d883A78WTvBnccgrPwVlKKKepxFYaYWKuhr_ehaNQAcQZGZVmlieqRB0ahONrE4ClyrkRiiu-CFrFmUBR8wLc4s3klQgrscC2Y0KMxXnkofKSoQyfcxatA7T93VvjGm9BCd_D5-ybbIF5XDF2RlrVvMFnCOoV-rCWfMD1C2hRg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH8heFAvfoDx2x08urGtHdsST6gElBETIeFG2u01ISgzZBzgr_e1TPyIB29NkybNe21_fZ8_gOvUQ8EjJmwVZ9p1E3n6SqEteDMLJNlEgWGJSPrNzpA_joJRBW42tTCIaJLP0NFDE8vP8nShXWUNgk6P6x6fW4T7PF5Xa208KgSGnIzzsgzYc-NG96XVDXSokOxA33fK5T94VAyMtPcg-dzAOntk6iwK6aSrX70Z_7vDfah_FexZzxsoOoAKzg5h91uvwRrc3mOZiDlZYWZpKmI6eq9LS1N2GqIIPWtc-XaLoC2zkpx0kL9hMV_WYdh-GNx17JI6wZ74LivsEGWmY-px6KESikuvmdK7p0gN-gqiiJQMA8Ui6WIaqiAlu04gE9JlGZdMsiOozvIZHoPlxor-JCEnZPdJ6rQikn4smCuVIDBLT6Cm5TB-X3fHGJciOP17-gq2O4OkN-51-09nsKP1ojO6_OgcqsV8gRcE8YW8NJr9AH0MpJY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28International+Symposium+on+Biomedical+Imaging%29&rft.atitle=Decentralized+Spatially+Constrained+Source-Based+Morphometry&rft.au=Saha%2C+Debbrata+K.&rft.au=Silva%2C+Rogers+F.&rft.au=Baker%2C+Bradley+T.&rft.au=Calhoun%2C+Vince+D.&rft.date=2022-03-28&rft.pub=IEEE&rft.eissn=1945-8452&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FISBI52829.2022.9761419&rft.externalDocID=9761419