Collaborative Distillation for Ultra-Resolution Universal Style Transfer

Universal style transfer methods typically leverage rich representations from deep Convolutional Neural Network (CNN) models (e.g., VGG-19) pre-trained on large collections of images. Despite the effectiveness, its application is heavily constrained by the large model size to handle ultra-resolution...

Full description

Saved in:
Bibliographic Details
Published inProceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 1857 - 1866
Main Authors Wang, Huan, Li, Yijun, Wang, Yuehai, Hu, Haoji, Yang, Ming-Hsuan
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Universal style transfer methods typically leverage rich representations from deep Convolutional Neural Network (CNN) models (e.g., VGG-19) pre-trained on large collections of images. Despite the effectiveness, its application is heavily constrained by the large model size to handle ultra-resolution images given limited memory. In this work, we present a new knowledge distillation method (named Collaborative Distillation) for encoder-decoder based neural style transfer to reduce the convolutional filters. The main idea is underpinned by a finding that the encoder-decoder pairs construct an exclusive collaborative relationship, which is regarded as a new kind of knowledge for style transfer models. Moreover, to overcome the feature size mismatch when applying collaborative distillation, a linear embedding loss is introduced to drive the student network to learn a linear embedding of the teacher's features. Extensive experiments show the effectiveness of our method when applied to different universal style transfer approaches (WCT and AdaIN), even if the model size is reduced by 15.5 times. Especially, on WCT with the compressed models, we achieve ultra-resolution (over 40 megapixels) universal style transfer on a 12GB GPU for the first time. Further experiments on optimization-based stylization scheme show the generality of our algorithm on different stylization paradigms. Our code and trained models are available at https://github.com/mingsun-tse/collaborative-distillation.
AbstractList Universal style transfer methods typically leverage rich representations from deep Convolutional Neural Network (CNN) models (e.g., VGG-19) pre-trained on large collections of images. Despite the effectiveness, its application is heavily constrained by the large model size to handle ultra-resolution images given limited memory. In this work, we present a new knowledge distillation method (named Collaborative Distillation) for encoder-decoder based neural style transfer to reduce the convolutional filters. The main idea is underpinned by a finding that the encoder-decoder pairs construct an exclusive collaborative relationship, which is regarded as a new kind of knowledge for style transfer models. Moreover, to overcome the feature size mismatch when applying collaborative distillation, a linear embedding loss is introduced to drive the student network to learn a linear embedding of the teacher's features. Extensive experiments show the effectiveness of our method when applied to different universal style transfer approaches (WCT and AdaIN), even if the model size is reduced by 15.5 times. Especially, on WCT with the compressed models, we achieve ultra-resolution (over 40 megapixels) universal style transfer on a 12GB GPU for the first time. Further experiments on optimization-based stylization scheme show the generality of our algorithm on different stylization paradigms. Our code and trained models are available at https://github.com/mingsun-tse/collaborative-distillation.
Author Wang, Huan
Yang, Ming-Hsuan
Li, Yijun
Wang, Yuehai
Hu, Haoji
Author_xml – sequence: 1
  givenname: Huan
  surname: Wang
  fullname: Wang, Huan
  organization: Zhejiang University; Notheastern University
– sequence: 2
  givenname: Yijun
  surname: Li
  fullname: Li, Yijun
  organization: Adobe Research
– sequence: 3
  givenname: Yuehai
  surname: Wang
  fullname: Wang, Yuehai
  organization: Zhejiang University
– sequence: 4
  givenname: Haoji
  surname: Hu
  fullname: Hu, Haoji
  organization: Zhejiang University
– sequence: 5
  givenname: Ming-Hsuan
  surname: Yang
  fullname: Yang, Ming-Hsuan
  organization: UC Merced; Google Research
BookMark eNotjN1KxDAQRqMouK59Ar3oC3SdSdq0cyn1Z4UFZd16u6RxApHYSlKFfXuLevHxweFwzsXJMA4sxBXCChHoun193pZSA6wkSFgBIKkjkVHdYC3noW6qY7FA0KrQhHQmspTeAUBJRE3NQqzbMQTTj9FM_pvzW58mP4PJj0Puxph3YYqm2HIaw9cv7IbZi8mE_GU6BM530QzJcbwQp86ExNn_L0V3f7dr18Xm6eGxvdkUXoKaipqNorLW3JMFJwl6q6oSELmBN1W6XhnHxlh0lthZQ1RKia7StrRQSa2W4vKv65l5_xn9h4mHPWGl56z6AZNAULg
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR42600.2020.00193
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781728171685
1728171687
EISSN 1063-6919
EndPage 1866
ExternalDocumentID 9156947
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i203t-7ea39476eb9c0f290bc354011e80d34fb3afeaac1fc9efca994221f56c4c05263
IEDL.DBID RIE
IngestDate Wed Aug 27 02:30:34 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-7ea39476eb9c0f290bc354011e80d34fb3afeaac1fc9efca994221f56c4c05263
PageCount 10
ParticipantIDs ieee_primary_9156947
PublicationCentury 2000
PublicationDate 2020-Jun
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-Jun
PublicationDecade 2020
PublicationTitle Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online)
PublicationTitleAbbrev CVPR
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211698
Score 2.4725823
Snippet Universal style transfer methods typically leverage rich representations from deep Convolutional Neural Network (CNN) models (e.g., VGG-19) pre-trained on...
SourceID ieee
SourceType Publisher
StartPage 1857
SubjectTerms Collaboration
Decoding
Graphics processing units
Image coding
Image reconstruction
Knowledge engineering
Task analysis
Title Collaborative Distillation for Ultra-Resolution Universal Style Transfer
URI https://ieeexplore.ieee.org/document/9156947
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4AJ0-oYHynB48Wtvso9IwSYoIhKoYb6WOaGDdgYDHRX2_bXcEYD96aXtp02n7zTb-ZAlxlwnDl7n2KxmaOoOiMCs0t7ZsEM2aNMtYTxfE9H03Tu1k2q8H1NhcGEYP4DDu-Gd7yzVJvfKisKxzZEGmvDnVH3MpcrW08JXFMhot-lR3HItEdPE8eQv11xwJjL-AKr8s__lAJEDJswvh78FI58trZFKqjP3_VZfzv7PahvUvWI5MtDB1ADReH0Ky8S1Kd3XULRoOdyd-R3PjDnZdKOOI8VzLNi5WkPpxfbkZSaTZkTh6LjxxJgDU3Yhumw9unwYhW_yjQlzhKCtpDmbiJcVRCRzYWkdI-2sMY9iOTpFYl0qKUmlkt0GopRBrHzGZcp9qXg0mOoLFYLvAYiOBCewCLmZQpk44eZko5l8c4WDOYmhNo-YWZv5WlMubVmpz-3X0Ge940pfLqHBrFaoMXDuMLdRmM-wVqYqha
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEJ0gHvSECsZve_Do4nZ3u9AzSlYFQhQMN9KPaWLcgMHFRH-97e4Kxnjw1vTSptP2zZu-mQJcMK5jae99D7VhlqAo5nEVG6-tQ2TUaKmNI4r9QZyMo7sJm1TgcpULg4i5-Aybrpm_5eu5WrpQ2RW3ZINHrQ3YtLjPaJGttYqohJbLxLxd5sdRn191noYPeQV2ywMDJ-HK35d__KKSg0i3Bv3v4QvtyEtzmcmm-vxVmfG_89uBxjpdjwxXQLQLFZztQa30L0l5et_qkHTWRn9Hcu2Od1po4Yj1Xck4zRbCcwH9YjuSUrUhUvKYfaRIcmCzIzZg3L0ZdRKv_EnBew78MPNaKEI7sRglV74JuC-Vi_dQim1fh5GRoTAohKJGcTRKcB4FATUsVpFyBWHCfajO5jM8AMJjrhyEBVSIiApLEJmU1unRFtg0RvoQ6m5hpq9FsYxpuSZHf3efw1Yy6vemvdvB_TFsOzMVOqwTqGaLJZ5axM_kWW7oL2Lyq6M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=Collaborative+Distillation+for+Ultra-Resolution+Universal+Style+Transfer&rft.au=Wang%2C+Huan&rft.au=Li%2C+Yijun&rft.au=Wang%2C+Yuehai&rft.au=Hu%2C+Haoji&rft.date=2020-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=1857&rft.epage=1866&rft_id=info:doi/10.1109%2FCVPR42600.2020.00193&rft.externalDocID=9156947