Robust Regression Random Forests by Small and Noisy Training Data
A regression random forest model taking into account imprecision of the decision tree estimates is proposed. The imprecision stems from conditions of small or noisy training data which may take place in many applications. In fact, a meta-model is proposed to train and to compute optimal weights assi...
Saved in:
Published in | 2019 XXII International Conference on Soft Computing and Measurements (SCM) pp. 134 - 137 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.05.2019
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/SCM.2019.8903679 |
Cover
Abstract | A regression random forest model taking into account imprecision of the decision tree estimates is proposed. The imprecision stems from conditions of small or noisy training data which may take place in many applications. In fact, a meta-model is proposed to train and to compute optimal weights assigned to decision trees, which control the imprecision in order to get the robust random forest estimates. The imprecision of the tree estimations is defined by means of interval models, for example, by using confidence intervals. The weights are computed by solving a standard quadratic optimization problem with linear constraints. Numerical examples illustrate the proposed robust model which provides outperforming results for noisy and small data in comparison with the standard random forest. |
---|---|
AbstractList | A regression random forest model taking into account imprecision of the decision tree estimates is proposed. The imprecision stems from conditions of small or noisy training data which may take place in many applications. In fact, a meta-model is proposed to train and to compute optimal weights assigned to decision trees, which control the imprecision in order to get the robust random forest estimates. The imprecision of the tree estimations is defined by means of interval models, for example, by using confidence intervals. The weights are computed by solving a standard quadratic optimization problem with linear constraints. Numerical examples illustrate the proposed robust model which provides outperforming results for noisy and small data in comparison with the standard random forest. |
Author | Frank Coolen, P.A. Utkin, Lev V. Kovalev, Maxim S. |
Author_xml | – sequence: 1 givenname: Lev V. surname: Utkin fullname: Utkin, Lev V. organization: Peter the Great St.Petersburg Polytechnic University,Department of Telematics,St. Petersburg,Russia – sequence: 2 givenname: Maxim S. surname: Kovalev fullname: Kovalev, Maxim S. organization: Peter the Great St.Petersburg Polytechnic University,Department of Telematics,St. Petersburg,Russia – sequence: 3 givenname: P.A. surname: Frank Coolen fullname: Frank Coolen, P.A. organization: Durham University,Department of Mathematical Sciences,Durham,United Kingdom |
BookMark | eNotj0FLwzAYhiPowU3vgpf8gdZ8zZY0x1GdE6ZC1_v40nwdgTaRph767y240wPP4eF9V-w2xECMPYHIAYR5OVWfeSHA5KURUmlzw1agixKkEqDu2a6O9jdNvKbLSCn5GHiNwcWB7-MipsTtzE8D9j1fNP-KPs28GdEHHy78FSd8YHcd9oker1yzZv_WVIfs-P3-Ue2OmS-EnDLdUqclFlg6h8sUlOQ2RoMRxnUGFTmttxI7TZt221oLygiyrjRagpKlXLPn_6wnovPP6Acc5_P1lPwD_t1Fyw |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/SCM.2019.8903679 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1728136016 9781728136028 1728136024 9781728136011 |
EndPage | 137 |
ExternalDocumentID | 8903679 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i203t-7cef73a2a8dda903a3ed4971909df9a6ed7753af7e4c5cbb1690ebd897316383 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 06 17:54:13 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-7cef73a2a8dda903a3ed4971909df9a6ed7753af7e4c5cbb1690ebd897316383 |
PageCount | 4 |
ParticipantIDs | ieee_primary_8903679 |
PublicationCentury | 2000 |
PublicationDate | 2019-May |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-May |
PublicationDecade | 2010 |
PublicationTitle | 2019 XXII International Conference on Soft Computing and Measurements (SCM) |
PublicationTitleAbbrev | SCM |
PublicationYear | 2019 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.7147759 |
Snippet | A regression random forest model taking into account imprecision of the decision tree estimates is proposed. The imprecision stems from conditions of small or... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 134 |
SubjectTerms | Computational modeling confidence interval imprecise model Noise measurement Numerical models Optimization quadratic programming Radio frequency random forest Random forests regression Regression tree analysis robust model Training data Weight measurement |
Title | Robust Regression Random Forests by Small and Noisy Training Data |
URI | https://ieeexplore.ieee.org/document/8903679 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LawIxEA7qqae2aOmbHHpsVPZhNsdiK1JQilrwJnlMilR3i5s92F_fya5aWnroLYSQB5PkYzLf5CPkLkEHjYs4YFZzxSKruiyJdY9pmWgbxDbgUBJkx73ha_Q8j-c1cn_IhQGAknwGbV8sY_km04V_KuskAu9bLuqkjtusytXaRx67ojPtjzxVC21fNfuhl1LCxeCYjPYDVSyR93bhVFt__vqD8b8zOSGt78Q8-nKAnFNSg7RJHiaZKnJHJ_BWkVpTOpGpydbU627mLqdqS6druVpRrKbjbJlv6WwnDUEfpZMtMhs8zfpDtlNGYMugGzrGNVgeykAmxkicigzBRIIjuAtjheyB4eiGSMsh0rFWysfCQJmk1KlCn_SMNNIshXNCrVYau0GrhIBnmSuDLpWME8RxCTy0F6TpV7_4qP6-WOwWfvl39RU58haoCIHXpOE2BdwgaDt1W1rrCxmHmkY |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHvSkBoxv9-DRAumDbY8GJahADNSEG9nHrCFAa2x7wF_vtAWMxoO3zWazj0x2v8zON_MB3PjkoPHAsy2juLRcI1uW76m2pYSvjO0Zm2NBkB22e6_u08SbVOB2mwuDiAX5DBt5s4jl61hl-VdZ0w_oveXBDuwS7rtema21iT22gua4M8jJWmT9cuAPxZQCMLoHMNgsVfJE5o0slQ31-asK43_3cgj179Q89rIFnSOoYFSDu1EssyRlI3wraa0RG4lIx0uWK28macLkio2XYrFg1M2G8SxZsXAtDsHuRSrqEHYfwk7PWmsjWDO75aQWV2i4I2zhay1oK8JB7Qac4D3QJhBt1JwcEWE4uspTUubRMJTaL5SqyCs9hmoUR3gCzCipaBqyi4N0m7nU5FQJzyckF8gdcwq1_PTT97L6xXR98LO_u69hrxcO-tP-4_D5HPZza5T0wAuoph8ZXhKEp_KqsNwXXgSdkw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+XXII+International+Conference+on+Soft+Computing+and+Measurements+%28SCM%29&rft.atitle=Robust+Regression+Random+Forests+by+Small+and+Noisy+Training+Data&rft.au=Utkin%2C+Lev+V.&rft.au=Kovalev%2C+Maxim+S.&rft.au=Frank+Coolen%2C+P.A.&rft.date=2019-05-01&rft.pub=IEEE&rft.spage=134&rft.epage=137&rft_id=info:doi/10.1109%2FSCM.2019.8903679&rft.externalDocID=8903679 |