Robust Regression Random Forests by Small and Noisy Training Data

A regression random forest model taking into account imprecision of the decision tree estimates is proposed. The imprecision stems from conditions of small or noisy training data which may take place in many applications. In fact, a meta-model is proposed to train and to compute optimal weights assi...

Full description

Saved in:
Bibliographic Details
Published in2019 XXII International Conference on Soft Computing and Measurements (SCM) pp. 134 - 137
Main Authors Utkin, Lev V., Kovalev, Maxim S., Frank Coolen, P.A.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2019
Subjects
Online AccessGet full text
DOI10.1109/SCM.2019.8903679

Cover

Abstract A regression random forest model taking into account imprecision of the decision tree estimates is proposed. The imprecision stems from conditions of small or noisy training data which may take place in many applications. In fact, a meta-model is proposed to train and to compute optimal weights assigned to decision trees, which control the imprecision in order to get the robust random forest estimates. The imprecision of the tree estimations is defined by means of interval models, for example, by using confidence intervals. The weights are computed by solving a standard quadratic optimization problem with linear constraints. Numerical examples illustrate the proposed robust model which provides outperforming results for noisy and small data in comparison with the standard random forest.
AbstractList A regression random forest model taking into account imprecision of the decision tree estimates is proposed. The imprecision stems from conditions of small or noisy training data which may take place in many applications. In fact, a meta-model is proposed to train and to compute optimal weights assigned to decision trees, which control the imprecision in order to get the robust random forest estimates. The imprecision of the tree estimations is defined by means of interval models, for example, by using confidence intervals. The weights are computed by solving a standard quadratic optimization problem with linear constraints. Numerical examples illustrate the proposed robust model which provides outperforming results for noisy and small data in comparison with the standard random forest.
Author Frank Coolen, P.A.
Utkin, Lev V.
Kovalev, Maxim S.
Author_xml – sequence: 1
  givenname: Lev V.
  surname: Utkin
  fullname: Utkin, Lev V.
  organization: Peter the Great St.Petersburg Polytechnic University,Department of Telematics,St. Petersburg,Russia
– sequence: 2
  givenname: Maxim S.
  surname: Kovalev
  fullname: Kovalev, Maxim S.
  organization: Peter the Great St.Petersburg Polytechnic University,Department of Telematics,St. Petersburg,Russia
– sequence: 3
  givenname: P.A.
  surname: Frank Coolen
  fullname: Frank Coolen, P.A.
  organization: Durham University,Department of Mathematical Sciences,Durham,United Kingdom
BookMark eNotj0FLwzAYhiPowU3vgpf8gdZ8zZY0x1GdE6ZC1_v40nwdgTaRph767y240wPP4eF9V-w2xECMPYHIAYR5OVWfeSHA5KURUmlzw1agixKkEqDu2a6O9jdNvKbLSCn5GHiNwcWB7-MipsTtzE8D9j1fNP-KPs28GdEHHy78FSd8YHcd9oker1yzZv_WVIfs-P3-Ue2OmS-EnDLdUqclFlg6h8sUlOQ2RoMRxnUGFTmttxI7TZt221oLygiyrjRagpKlXLPn_6wnovPP6Acc5_P1lPwD_t1Fyw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SCM.2019.8903679
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728136016
9781728136028
1728136024
9781728136011
EndPage 137
ExternalDocumentID 8903679
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-7cef73a2a8dda903a3ed4971909df9a6ed7753af7e4c5cbb1690ebd897316383
IEDL.DBID RIE
IngestDate Wed Aug 06 17:54:13 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-7cef73a2a8dda903a3ed4971909df9a6ed7753af7e4c5cbb1690ebd897316383
PageCount 4
ParticipantIDs ieee_primary_8903679
PublicationCentury 2000
PublicationDate 2019-May
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-May
PublicationDecade 2010
PublicationTitle 2019 XXII International Conference on Soft Computing and Measurements (SCM)
PublicationTitleAbbrev SCM
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7147759
Snippet A regression random forest model taking into account imprecision of the decision tree estimates is proposed. The imprecision stems from conditions of small or...
SourceID ieee
SourceType Publisher
StartPage 134
SubjectTerms Computational modeling
confidence interval
imprecise model
Noise measurement
Numerical models
Optimization
quadratic programming
Radio frequency
random forest
Random forests
regression
Regression tree analysis
robust model
Training data
Weight measurement
Title Robust Regression Random Forests by Small and Noisy Training Data
URI https://ieeexplore.ieee.org/document/8903679
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LawIxEA7qqae2aOmbHHpsVPZhNsdiK1JQilrwJnlMilR3i5s92F_fya5aWnroLYSQB5PkYzLf5CPkLkEHjYs4YFZzxSKruiyJdY9pmWgbxDbgUBJkx73ha_Q8j-c1cn_IhQGAknwGbV8sY_km04V_KuskAu9bLuqkjtusytXaRx67ojPtjzxVC21fNfuhl1LCxeCYjPYDVSyR93bhVFt__vqD8b8zOSGt78Q8-nKAnFNSg7RJHiaZKnJHJ_BWkVpTOpGpydbU627mLqdqS6druVpRrKbjbJlv6WwnDUEfpZMtMhs8zfpDtlNGYMugGzrGNVgeykAmxkicigzBRIIjuAtjheyB4eiGSMsh0rFWysfCQJmk1KlCn_SMNNIshXNCrVYau0GrhIBnmSuDLpWME8RxCTy0F6TpV7_4qP6-WOwWfvl39RU58haoCIHXpOE2BdwgaDt1W1rrCxmHmkY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHvSkBoxv9-DRAumDbY8GJahADNSEG9nHrCFAa2x7wF_vtAWMxoO3zWazj0x2v8zON_MB3PjkoPHAsy2juLRcI1uW76m2pYSvjO0Zm2NBkB22e6_u08SbVOB2mwuDiAX5DBt5s4jl61hl-VdZ0w_oveXBDuwS7rtema21iT22gua4M8jJWmT9cuAPxZQCMLoHMNgsVfJE5o0slQ31-asK43_3cgj179Q89rIFnSOoYFSDu1EssyRlI3wraa0RG4lIx0uWK28macLkio2XYrFg1M2G8SxZsXAtDsHuRSrqEHYfwk7PWmsjWDO75aQWV2i4I2zhay1oK8JB7Qac4D3QJhBt1JwcEWE4uspTUubRMJTaL5SqyCs9hmoUR3gCzCipaBqyi4N0m7nU5FQJzyckF8gdcwq1_PTT97L6xXR98LO_u69hrxcO-tP-4_D5HPZza5T0wAuoph8ZXhKEp_KqsNwXXgSdkw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+XXII+International+Conference+on+Soft+Computing+and+Measurements+%28SCM%29&rft.atitle=Robust+Regression+Random+Forests+by+Small+and+Noisy+Training+Data&rft.au=Utkin%2C+Lev+V.&rft.au=Kovalev%2C+Maxim+S.&rft.au=Frank+Coolen%2C+P.A.&rft.date=2019-05-01&rft.pub=IEEE&rft.spage=134&rft.epage=137&rft_id=info:doi/10.1109%2FSCM.2019.8903679&rft.externalDocID=8903679