Detection of HTTPS Brute-Force Attacks with Packet-Level Feature Set

This paper presents a novel approach to detect brute-force attacks against web services in high-speed networks. The prevalence of brute-force attacks is so high that service providers, such as ISPs or web-hosting providers, cannot depend on their customers' host-based defenses. Moreover, the ri...

Full description

Saved in:
Bibliographic Details
Published in2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC) pp. 0114 - 0122
Main Authors Luxemburk, Jan, Hynek, Karel, Cejka, Tomas
Format Conference Proceeding
LanguageEnglish
Published IEEE 27.01.2021
Subjects
Online AccessGet full text
DOI10.1109/CCWC51732.2021.9375998

Cover

Abstract This paper presents a novel approach to detect brute-force attacks against web services in high-speed networks. The prevalence of brute-force attacks is so high that service providers, such as ISPs or web-hosting providers, cannot depend on their customers' host-based defenses. Moreover, the rising usage of encryption makes it more difficult to detect attacks on the network level. In our research, we created a dataset, which consists of 1.8 million extended IP flows from a backbone network combined with IP flows generated with three popular open-source brute-forcing tools. We identified a distinctive packet-level feature set and trained a machine-learning classifier with a false positive rate of 10 -4 and a true positive rate (the ratio of discovered attacks) of 0.938. The achieved results surpass the state-of-the-art solutions and show that the developed HTTPS brute-force detection algorithm is viable for production deployment.
AbstractList This paper presents a novel approach to detect brute-force attacks against web services in high-speed networks. The prevalence of brute-force attacks is so high that service providers, such as ISPs or web-hosting providers, cannot depend on their customers' host-based defenses. Moreover, the rising usage of encryption makes it more difficult to detect attacks on the network level. In our research, we created a dataset, which consists of 1.8 million extended IP flows from a backbone network combined with IP flows generated with three popular open-source brute-forcing tools. We identified a distinctive packet-level feature set and trained a machine-learning classifier with a false positive rate of 10 -4 and a true positive rate (the ratio of discovered attacks) of 0.938. The achieved results surpass the state-of-the-art solutions and show that the developed HTTPS brute-force detection algorithm is viable for production deployment.
Author Cejka, Tomas
Luxemburk, Jan
Hynek, Karel
Author_xml – sequence: 1
  givenname: Jan
  surname: Luxemburk
  fullname: Luxemburk, Jan
  email: luxemburk@cesnet.cz
  organization: FIT CTU & CESNET a.l.e
– sequence: 2
  givenname: Karel
  surname: Hynek
  fullname: Hynek, Karel
  email: hynekkar@cesnet.cz
  organization: FIT CTU & CESNET a.l.e
– sequence: 3
  givenname: Tomas
  surname: Cejka
  fullname: Cejka, Tomas
  email: cejkat@cesnet.cz
  organization: CESNET a.l.e
BookMark eNotj91KwzAYQCPohZt7AkHyAq35T77L2VknFDZYxcuRpl8xOFvJMsW3V3BX51wdODNyOU4jEnLHWck5g_uqeq00t1KUgglegrQawF2QGTdGK66A8WuyWmHGkOM00mmg67bd7uhDOmUs6ikFpMucfXg_0u-Y3-j2TzEXDX7hgdbo8ykh3WG-IVeDPxxxceacvNSPbbUums3Tc7VsiiiYzIXtemeEZA4cEwjAPLP9MACqAD2XwTCDUgIItMKJToPwyruuR9cHrVWQc3L7342IuP9M8cOnn_15TP4CmmJG4A
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CCWC51732.2021.9375998
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665414901
9781665414906
EndPage 0122
ExternalDocumentID 9375998
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-7bd8623089802e990a07dff9e4c9d13c606e33992e7282b592a4a8bde8dc554c3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:24 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-7bd8623089802e990a07dff9e4c9d13c606e33992e7282b592a4a8bde8dc554c3
PageCount 9
ParticipantIDs ieee_primary_9375998
PublicationCentury 2000
PublicationDate 2021-Jan.-27
PublicationDateYYYYMMDD 2021-01-27
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-Jan.-27
  day: 27
PublicationDecade 2020
PublicationTitle 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC)
PublicationTitleAbbrev CCWC
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8454999
Snippet This paper presents a novel approach to detect brute-force attacks against web services in high-speed networks. The prevalence of brute-force attacks is so...
SourceID ieee
SourceType Publisher
StartPage 0114
SubjectTerms Brute-force attacks
Conferences
Detectors
Encrypted traffic
Flow monitoring
HTTPS
IP networks
Machine learning
Monitoring
Open source software
Telecommunication traffic
Traffic analysis
Title Detection of HTTPS Brute-Force Attacks with Packet-Level Feature Set
URI https://ieeexplore.ieee.org/document/9375998
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5tT55UWvFNDh7NdneTNJujbC1FrBTaYm8lj1kQYVdK9tJfb7JdK4oHbyEk5DGBb2Yy3wxCd0JYxtOCEmUglDBLNJFAOTEJAya1hAKCH3L2Mpqu2NOarzvo_sCFAYAm-Ayi0Gz-8m1l6uAqG3oo5d486KKuf2Z7rlZL-k1iOczz15wnggZ6VZpE7eAfVVMa0Jgco9nXcvtYkfeodjoyu1-ZGP-7nxM0-Kbn4fkBeE5RB8o-Go_BNWFVJa4KPF0u5wvsBeeATKqtn_DgXKDT4-B4xXPfBEeeQ8QQDlpgvQW8ADdAq8njMp-StkQCeUtj6ojQ1pskNM5kFqfgkUXFwhaFBGakTajx5gnQkHsWhLetNJepYirTFjJrvCJh6BnqlVUJ5whnXpFSMim4iC0zzGg_hI2YMqmSVDN-gfrhBjYf-ywYm_bwl393X6GjIIXgrEjFNeq5bQ03Hr6dvm3k9gnNYpr9
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAC1CLeeGDEaRLbTTyilCpAW1VqKrpVsX2REFKCKmfh12OnAQRiYLOss_y44bs733eH0E0UacbDgpJcgWthFkgigHKiAgZMSAEFuDjkdDZMl-xxxVcddPvFhQGAJvkMPDds_vJ1pWoXKhtYKOXWPdhBuxb3Gd-ytVrab-CLQZI8JzyIqCNYhYHXiv_om9LAxvgATT833GaLvHq1kZ56_1WL8b8nOkT9b4Ienn9BzxHqQNlDoxGYJrGqxFWB0yybL7BVnQEyrjZ2wZ0xjlCPXegVz-0QDJm4nCHs7MB6A3gBpo-W4_ssSUnbJIG8hD41JJLaOiXUj0Xsh2CxJfcjXRQCmBI6oMo6KEBd9VmIrHcluQhzlsdSQ6yVNSUUPUbdsirhBOHYmlK5CAoe-ZoppqQVYUOWqzAXVDJ-inruBdZv2zoY6_byZ39PX6O9NJtO1pOH2dM52ncacaGLMLpAXbOp4dKCuZFXjQ4_AB42nko
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+11th+Annual+Computing+and+Communication+Workshop+and+Conference+%28CCWC%29&rft.atitle=Detection+of+HTTPS+Brute-Force+Attacks+with+Packet-Level+Feature+Set&rft.au=Luxemburk%2C+Jan&rft.au=Hynek%2C+Karel&rft.au=Cejka%2C+Tomas&rft.date=2021-01-27&rft.pub=IEEE&rft.spage=0114&rft.epage=0122&rft_id=info:doi/10.1109%2FCCWC51732.2021.9375998&rft.externalDocID=9375998