CA-SpaceNet: Counterfactual Analysis for 6D Pose Estimation in Space

Reliable and stable 6D pose estimation of un-cooperative space objects plays an essential role in on-orbit servicing and debris removal missions. Considering that the pose estimator is sensitive to background interference, this paper proposes a counterfactual analysis framework named CA-SpaceNet to...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems pp. 10627 - 10634
Main Authors Wang, Shunli, Wang, Shuaibing, Jiao, Bo, Yang, Dingkang, Su, Liuzhen, Zhai, Peng, Chen, Chixiao, Zhang, Lihua
Format Conference Proceeding
LanguageEnglish
Published IEEE 23.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Reliable and stable 6D pose estimation of un-cooperative space objects plays an essential role in on-orbit servicing and debris removal missions. Considering that the pose estimator is sensitive to background interference, this paper proposes a counterfactual analysis framework named CA-SpaceNet to complete robust 6D pose estimation of the space-borne targets under complicated background. Specifically, conventional methods are adopted to extract the features of the whole image in the factual case. In the counterfactual case, a non-existent image without the target but only the background is imagined. Side effect caused by background interference is reduced by counterfactual analysis, which leads to unbiased prediction in final results. In addition, we also carry out low-bit-width quantization for CA-SpaceNet and deploy part of the framework to a Processing-In-Memory (PIM) accelerator on FPGA. Qualitative and quantitative results demonstrate the effectiveness and efficiency of our proposed method. To our best knowledge, this paper applies causal inference and network quantization to the 6D pose estimation of space-borne targets for the first time. The code is available at https://github.com/Shunli-Wang/CA-SpaceNet.
AbstractList Reliable and stable 6D pose estimation of un-cooperative space objects plays an essential role in on-orbit servicing and debris removal missions. Considering that the pose estimator is sensitive to background interference, this paper proposes a counterfactual analysis framework named CA-SpaceNet to complete robust 6D pose estimation of the space-borne targets under complicated background. Specifically, conventional methods are adopted to extract the features of the whole image in the factual case. In the counterfactual case, a non-existent image without the target but only the background is imagined. Side effect caused by background interference is reduced by counterfactual analysis, which leads to unbiased prediction in final results. In addition, we also carry out low-bit-width quantization for CA-SpaceNet and deploy part of the framework to a Processing-In-Memory (PIM) accelerator on FPGA. Qualitative and quantitative results demonstrate the effectiveness and efficiency of our proposed method. To our best knowledge, this paper applies causal inference and network quantization to the 6D pose estimation of space-borne targets for the first time. The code is available at https://github.com/Shunli-Wang/CA-SpaceNet.
Author Chen, Chixiao
Jiao, Bo
Yang, Dingkang
Zhai, Peng
Su, Liuzhen
Wang, Shunli
Zhang, Lihua
Wang, Shuaibing
Author_xml – sequence: 1
  givenname: Shunli
  surname: Wang
  fullname: Wang, Shunli
  organization: Academy for Engineering & Technology, Fudan University
– sequence: 2
  givenname: Shuaibing
  surname: Wang
  fullname: Wang, Shuaibing
  organization: Academy for Engineering & Technology, Fudan University
– sequence: 3
  givenname: Bo
  surname: Jiao
  fullname: Jiao, Bo
  organization: Academy for Engineering & Technology, Fudan University
– sequence: 4
  givenname: Dingkang
  surname: Yang
  fullname: Yang, Dingkang
  organization: Academy for Engineering & Technology, Fudan University
– sequence: 5
  givenname: Liuzhen
  surname: Su
  fullname: Su, Liuzhen
  organization: Academy for Engineering & Technology, Fudan University
– sequence: 6
  givenname: Peng
  surname: Zhai
  fullname: Zhai, Peng
  organization: Academy for Engineering & Technology, Fudan University
– sequence: 7
  givenname: Chixiao
  surname: Chen
  fullname: Chen, Chixiao
  email: cxchen@fudan.edu.cn
  organization: Academy for Engineering & Technology, Fudan University
– sequence: 8
  givenname: Lihua
  surname: Zhang
  fullname: Zhang, Lihua
  email: lihuazhang@fudan.edu.cn
  organization: Academy for Engineering & Technology, Fudan University
BookMark eNotj8FKw0AURUdRsK39AkHmBxLfe5PMzHMX0qqFYsXqukzSCYzEpGTSRf9e0a7u6hzOnYqrru-8EPcIKSLww-p9s82MRkoJiFJmi2joQkxR6zwzTIYuxYQwVwlYrW_EPMYvAEAwbFlPxKIsku3B1f7Vj4-y7I_d6IfG1ePRtbLoXHuKIcqmH6ReyLc-ermMY_h2Y-g7GTr5x96K68a10c_POxOfT8uP8iVZb55XZbFOAoEaE8MZKbJNU1feojHA2T63uUFE7SrrbWZNvdcu50oBg8em5jpnQ1oRAzo1E3f_3uC93x2G347htDufVj9DhUuO
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IROS47612.2022.9981172
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1665479272
9781665479271
EISSN 2153-0866
EndPage 10634
ExternalDocumentID 9981172
Genre orig-research
GrantInformation_xml – fundername: NSFC
  grantid: 61974033
  funderid: 10.13039/501100001809
– fundername: Shanghai Municipal Science and Technology Major Project
  grantid: 2021SHZDZX0103
  funderid: 10.13039/501100003399
GroupedDBID 6IE
6IF
6IH
6IL
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-7942328ffcbe8177094d58571116ab8e8487cd6a59b3090e1fc9c5972632901a3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:27:41 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-7942328ffcbe8177094d58571116ab8e8487cd6a59b3090e1fc9c5972632901a3
PageCount 8
ParticipantIDs ieee_primary_9981172
PublicationCentury 2000
PublicationDate 2022-Oct.-23
PublicationDateYYYYMMDD 2022-10-23
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-Oct.-23
  day: 23
PublicationDecade 2020
PublicationTitle Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems
PublicationTitleAbbrev IROS
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001079896
Score 2.3405864
Snippet Reliable and stable 6D pose estimation of un-cooperative space objects plays an essential role in on-orbit servicing and debris removal missions. Considering...
SourceID ieee
SourceType Publisher
StartPage 10627
SubjectTerms Interference
Knowledge engineering
Neural networks
Pose estimation
Quantization (signal)
Space missions
Space technology
Title CA-SpaceNet: Counterfactual Analysis for 6D Pose Estimation in Space
URI https://ieeexplore.ieee.org/document/9981172
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB7anvTioxXf7MGjm-bRbHa9SR9UobVYC72VbHYCRUhF04u_3tkkbVU8eAsDy4ZdJt98m_2-AbhJY2tjKTxuZKh5Bz3FpTHCCnXTKNZRFCRWnDwai-Gs8zgP5zW43WphELG4fIaOfSz-5ZtVsrZHZW2iBh4Bbh3qRNxKrdbuPMWNlFSiEgHT_O2H56dph1i6lVv5vlMN_tFFpQCRwQGMNtOXd0denXWuneTzlzPjf9_vEFo7uR6bbIHoCGqYHcP-N6fBJvS693xK9BjHmN8xK0S37anjQj3CNsYkjApYJnpssvpA1qfcL2WNbJmxYmwLZoP-S3fIqwYKfOm7Qc4p16hgkmmaaJReFBGVM0QPIvq-iVhLlMRWEiPiUOnAVS56aaISYhjWw53qhDg4gUa2yvAUmDBEbAQlN0WJcqKkysVPQ2WMoTDiGTTteizeSo-MRbUU53-HL2DP7onFAD-4hEb-vsYrAvdcXxe7-gUAj6F4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT8JAEJ4gHtSLDzC-3YMeW2hLt62JB8MjIA-JQMIN2-40ISaFSInR3-Jf8b852xZQ45XEWzNJm87sdOeb7XwzAFeBK9tYck0RtukpJdQcxRaCS6JuYLmeZRm-JCe3O7w-KN0PzWEGPpZcGESMi89QlZfxv3wx8efyqKxAqYFGATctoWzi2yslaLPbRoVW81rXa9V-ua6kMwSUsV40IoXcjTCDHQS-h7ZmWZTNCELIFn3i3PVstAmw-4K7puMZRaeIWuA7PoFs2cacQqVr0HM3YJNwhqkn7LDVCU7RcmyHp7Rj0rjQeHzolSzCDJR36rqavu6PuS1x2KrtwudC4aRa5VmdR57qv__qBflfLbIH-RUhkXWXoXYfMhgewM63Xoo5qJTvlN7U9bGD0Q2TVHs5gNuN-TFs0XqFEURnvMK6kxmyKu1uCXGTjUMW35uHwVqUOYRsOAnxCBgXlLpx2r5ISkk12oTN9MB0hBAkRjyGnLT_aJp0ARmlpj_5W3wJW_V-uzVqNTrNU9iW_iAjnm6cQTZ6meM5QZnIu4g9isHTuhfsC27o-5E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE%2FRSJ+International+Conference+on+Intelligent+Robots+and+Systems&rft.atitle=CA-SpaceNet%3A+Counterfactual+Analysis+for+6D+Pose+Estimation+in+Space&rft.au=Wang%2C+Shunli&rft.au=Wang%2C+Shuaibing&rft.au=Jiao%2C+Bo&rft.au=Yang%2C+Dingkang&rft.date=2022-10-23&rft.pub=IEEE&rft.eissn=2153-0866&rft.spage=10627&rft.epage=10634&rft_id=info:doi/10.1109%2FIROS47612.2022.9981172&rft.externalDocID=9981172