Hyperparameters Tuning for Machine Learning Models for Time Series Forecasting

In this study we experimentally test the accuracy of time series forecasting for three different architectures of neural networks with the various number of layers and neurons in each layer: recurrent neural networks with LSTM cells, one-dimensional convolutional neural networks and multi-layer perc...

Full description

Saved in:
Bibliographic Details
Published in2019 Sixth International Conference on Social Networks Analysis, Management and Security (SNAMS) pp. 328 - 332
Main Authors Peter, Gladilin, Matskevichus, Maria
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2019
Subjects
Online AccessGet full text
DOI10.1109/SNAMS.2019.8931860

Cover

Abstract In this study we experimentally test the accuracy of time series forecasting for three different architectures of neural networks with the various number of layers and neurons in each layer: recurrent neural networks with LSTM cells, one-dimensional convolutional neural networks and multi-layer perceptrons (fully-connected models). We fit every model on the set of 100 various time series from M4 Kaggle competition to evaluate the optimal configuration in terms of the forecasting accuracy and the model's complexity. Experimental results have shown that: (i) one-layer recurrent neural networks with LSTM cells have better prediction accuracy in general; (ii) it is no obvious dependence of the number of the layers on the predictive accuracy and (iii) from the point of view of the specific complexity fully-connected models and convolutional neural networks are the best choice.
AbstractList In this study we experimentally test the accuracy of time series forecasting for three different architectures of neural networks with the various number of layers and neurons in each layer: recurrent neural networks with LSTM cells, one-dimensional convolutional neural networks and multi-layer perceptrons (fully-connected models). We fit every model on the set of 100 various time series from M4 Kaggle competition to evaluate the optimal configuration in terms of the forecasting accuracy and the model's complexity. Experimental results have shown that: (i) one-layer recurrent neural networks with LSTM cells have better prediction accuracy in general; (ii) it is no obvious dependence of the number of the layers on the predictive accuracy and (iii) from the point of view of the specific complexity fully-connected models and convolutional neural networks are the best choice.
Author Peter, Gladilin
Matskevichus, Maria
Author_xml – sequence: 1
  givenname: Gladilin
  surname: Peter
  fullname: Peter, Gladilin
  organization: ITMO University,Saint-Petersburg,Russia
– sequence: 2
  givenname: Maria
  surname: Matskevichus
  fullname: Matskevichus, Maria
  organization: ITMO University,Saint-Petersburg,Russia
BookMark eNotj81Kw0AUhUfQha2-gG7mBRLnZtKZuctSrBWSukgEd-UmudGB5odJXPTtLbWrA-f7OHAW4rYfehbiCVQMoPCl2K_zIk4UYOxQgzPqRizAJg4STM3XvdjvTiOHkQJ1PHOYZPnb-_5btkOQOdU_vmeZMYVLmQ8NH6cLK33HsuDgeZLbIXBN03xWHsRdS8eJH6-5FJ_b13Kzi7KPt_fNOot8ovQcWVTa2koTtdjoum4AjXEEeKbNqrI2dalxddtCxY2rMAFjiR1oBKcNrvRSPP_vemY-jMF3FE6H60X9B2GdSvU
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SNAMS.2019.8931860
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 172812946X
9781728129464
EndPage 332
ExternalDocumentID 8931860
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-790377b3aaf9d3ccd19668a19203d5b7748468cff1bed8b92167ae81391836953
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:00 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-790377b3aaf9d3ccd19668a19203d5b7748468cff1bed8b92167ae81391836953
PageCount 5
ParticipantIDs ieee_primary_8931860
PublicationCentury 2000
PublicationDate 2019-Oct.
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-Oct.
PublicationDecade 2010
PublicationTitle 2019 Sixth International Conference on Social Networks Analysis, Management and Security (SNAMS)
PublicationTitleAbbrev SNAMS
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7616694
Snippet In this study we experimentally test the accuracy of time series forecasting for three different architectures of neural networks with the various number of...
SourceID ieee
SourceType Publisher
StartPage 328
SubjectTerms Biological neural networks
Computer architecture
convolutional neural networks
deep learning
Forecasting
machine learning
Neurons
Predictive models
Recurrent neural networks
Time series analysis
Title Hyperparameters Tuning for Machine Learning Models for Time Series Forecasting
URI https://ieeexplore.ieee.org/document/8931860
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zJ08qm_hNDh7t1jRtmpzFMYQOwQ12G_mqiLrJ2l786_deuk0UD95K2tCSl_A--vu9HyG3znhWMgEWMExHKLYdwS7hEQSjKItjSx5kOouJGM_Sx3k275C7PRfGex_AZ36Al-FfvlvZBktlQ_CtTApI0A9gm7VcrR0PJlbD5wnkvgjWAuu3D_5QTAkOY3REit2rWpzI26CpzcB-_erC-N9vOSb9b2oefdo7nRPS8csemYwhm1xjF-8PRLdUdNpguYNCQEqLgJb0dNtI9YWi-tl7Fe4h_4NifcxXFDU6ra4QBd0ns9HD9H4cbYUSotck5nWUq5jnueFal8pxax0cKyE1BG8xd5nJsV-okLYsmfFOGpUwkWsvIfiDAy1Uxk9Jd7la-jNCXeJkklqurPJpZqVOJdO5gUklcnLNOenhWiw-214Yi-0yXPw9fEkO0R4t-O2KdOt146_BidfmJlhvAwjzna4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYqGGAC1CLeeGAkbRzn4cyIKkATIdFK3Sq_ghDQoiZZ-PXcOW0RiIEtcmIl8sW6h7_vPkKujLKsZDFYQDHpodi2B38J9yAYRVkcXXIn05kXcTYJ76fRtEOuN1wYa60Dn9k-XrqzfLPQDZbKBuBbmYghQd8Gvx9GLVtrzYTx08FTAdkvwrXA_u2jPzRTnMsY7pF8_bIWKfLab2rV15-_-jD-92v2Se-bnEcfN27ngHTsvEuKDPLJJfbxfkd8S0XHDRY8KISkNHd4SUtXrVSfKeqfvVXuHjJAKFbIbEVRpVPLCnHQPTIZ3o5vMm8lleC9BD6vvST1eZIoLmWZGq61gY0VCwnhm89NpBLsGBoLXZZMWSNUGrA4kVZA-AdbOk4jfki25ou5PSLUBEYEoeapTm0YaSFDwWSiYFKJrFx1TLq4FrOPthvGbLUMJ38PX5KdbJyPZqO74uGU7KJtWijcGdmql409B5deqwtnyS96HqD7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+Sixth+International+Conference+on+Social+Networks+Analysis%2C+Management+and+Security+%28SNAMS%29&rft.atitle=Hyperparameters+Tuning+for+Machine+Learning+Models+for+Time+Series+Forecasting&rft.au=Peter%2C+Gladilin&rft.au=Matskevichus%2C+Maria&rft.date=2019-10-01&rft.pub=IEEE&rft.spage=328&rft.epage=332&rft_id=info:doi/10.1109%2FSNAMS.2019.8931860&rft.externalDocID=8931860