Hyperparameters Tuning for Machine Learning Models for Time Series Forecasting
In this study we experimentally test the accuracy of time series forecasting for three different architectures of neural networks with the various number of layers and neurons in each layer: recurrent neural networks with LSTM cells, one-dimensional convolutional neural networks and multi-layer perc...
Saved in:
Published in | 2019 Sixth International Conference on Social Networks Analysis, Management and Security (SNAMS) pp. 328 - 332 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.10.2019
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/SNAMS.2019.8931860 |
Cover
Abstract | In this study we experimentally test the accuracy of time series forecasting for three different architectures of neural networks with the various number of layers and neurons in each layer: recurrent neural networks with LSTM cells, one-dimensional convolutional neural networks and multi-layer perceptrons (fully-connected models). We fit every model on the set of 100 various time series from M4 Kaggle competition to evaluate the optimal configuration in terms of the forecasting accuracy and the model's complexity. Experimental results have shown that: (i) one-layer recurrent neural networks with LSTM cells have better prediction accuracy in general; (ii) it is no obvious dependence of the number of the layers on the predictive accuracy and (iii) from the point of view of the specific complexity fully-connected models and convolutional neural networks are the best choice. |
---|---|
AbstractList | In this study we experimentally test the accuracy of time series forecasting for three different architectures of neural networks with the various number of layers and neurons in each layer: recurrent neural networks with LSTM cells, one-dimensional convolutional neural networks and multi-layer perceptrons (fully-connected models). We fit every model on the set of 100 various time series from M4 Kaggle competition to evaluate the optimal configuration in terms of the forecasting accuracy and the model's complexity. Experimental results have shown that: (i) one-layer recurrent neural networks with LSTM cells have better prediction accuracy in general; (ii) it is no obvious dependence of the number of the layers on the predictive accuracy and (iii) from the point of view of the specific complexity fully-connected models and convolutional neural networks are the best choice. |
Author | Peter, Gladilin Matskevichus, Maria |
Author_xml | – sequence: 1 givenname: Gladilin surname: Peter fullname: Peter, Gladilin organization: ITMO University,Saint-Petersburg,Russia – sequence: 2 givenname: Maria surname: Matskevichus fullname: Matskevichus, Maria organization: ITMO University,Saint-Petersburg,Russia |
BookMark | eNotj81Kw0AUhUfQha2-gG7mBRLnZtKZuctSrBWSukgEd-UmudGB5odJXPTtLbWrA-f7OHAW4rYfehbiCVQMoPCl2K_zIk4UYOxQgzPqRizAJg4STM3XvdjvTiOHkQJ1PHOYZPnb-_5btkOQOdU_vmeZMYVLmQ8NH6cLK33HsuDgeZLbIXBN03xWHsRdS8eJH6-5FJ_b13Kzi7KPt_fNOot8ovQcWVTa2koTtdjoum4AjXEEeKbNqrI2dalxddtCxY2rMAFjiR1oBKcNrvRSPP_vemY-jMF3FE6H60X9B2GdSvU |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/SNAMS.2019.8931860 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 172812946X 9781728129464 |
EndPage | 332 |
ExternalDocumentID | 8931860 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i203t-790377b3aaf9d3ccd19668a19203d5b7748468cff1bed8b92167ae81391836953 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:38:00 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-790377b3aaf9d3ccd19668a19203d5b7748468cff1bed8b92167ae81391836953 |
PageCount | 5 |
ParticipantIDs | ieee_primary_8931860 |
PublicationCentury | 2000 |
PublicationDate | 2019-Oct. |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-Oct. |
PublicationDecade | 2010 |
PublicationTitle | 2019 Sixth International Conference on Social Networks Analysis, Management and Security (SNAMS) |
PublicationTitleAbbrev | SNAMS |
PublicationYear | 2019 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.7616694 |
Snippet | In this study we experimentally test the accuracy of time series forecasting for three different architectures of neural networks with the various number of... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 328 |
SubjectTerms | Biological neural networks Computer architecture convolutional neural networks deep learning Forecasting machine learning Neurons Predictive models Recurrent neural networks Time series analysis |
Title | Hyperparameters Tuning for Machine Learning Models for Time Series Forecasting |
URI | https://ieeexplore.ieee.org/document/8931860 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zJ08qm_hNDh7t1jRtmpzFMYQOwQ12G_mqiLrJ2l786_deuk0UD95K2tCSl_A--vu9HyG3znhWMgEWMExHKLYdwS7hEQSjKItjSx5kOouJGM_Sx3k275C7PRfGex_AZ36Al-FfvlvZBktlQ_CtTApI0A9gm7VcrR0PJlbD5wnkvgjWAuu3D_5QTAkOY3REit2rWpzI26CpzcB-_erC-N9vOSb9b2oefdo7nRPS8csemYwhm1xjF-8PRLdUdNpguYNCQEqLgJb0dNtI9YWi-tl7Fe4h_4NifcxXFDU6ra4QBd0ns9HD9H4cbYUSotck5nWUq5jnueFal8pxax0cKyE1BG8xd5nJsV-okLYsmfFOGpUwkWsvIfiDAy1Uxk9Jd7la-jNCXeJkklqurPJpZqVOJdO5gUklcnLNOenhWiw-214Yi-0yXPw9fEkO0R4t-O2KdOt146_BidfmJlhvAwjzna4 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYqGGAC1CLeeGAkbRzn4cyIKkATIdFK3Sq_ghDQoiZZ-PXcOW0RiIEtcmIl8sW6h7_vPkKujLKsZDFYQDHpodi2B38J9yAYRVkcXXIn05kXcTYJ76fRtEOuN1wYa60Dn9k-XrqzfLPQDZbKBuBbmYghQd8Gvx9GLVtrzYTx08FTAdkvwrXA_u2jPzRTnMsY7pF8_bIWKfLab2rV15-_-jD-92v2Se-bnEcfN27ngHTsvEuKDPLJJfbxfkd8S0XHDRY8KISkNHd4SUtXrVSfKeqfvVXuHjJAKFbIbEVRpVPLCnHQPTIZ3o5vMm8lleC9BD6vvST1eZIoLmWZGq61gY0VCwnhm89NpBLsGBoLXZZMWSNUGrA4kVZA-AdbOk4jfki25ou5PSLUBEYEoeapTm0YaSFDwWSiYFKJrFx1TLq4FrOPthvGbLUMJ38PX5KdbJyPZqO74uGU7KJtWijcGdmql409B5deqwtnyS96HqD7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+Sixth+International+Conference+on+Social+Networks+Analysis%2C+Management+and+Security+%28SNAMS%29&rft.atitle=Hyperparameters+Tuning+for+Machine+Learning+Models+for+Time+Series+Forecasting&rft.au=Peter%2C+Gladilin&rft.au=Matskevichus%2C+Maria&rft.date=2019-10-01&rft.pub=IEEE&rft.spage=328&rft.epage=332&rft_id=info:doi/10.1109%2FSNAMS.2019.8931860&rft.externalDocID=8931860 |