Fast, Accurate and Lightweight Super-Resolution with Neural Architecture Search

Deep convolutional neural networks demonstrate impressive results in the super-resolution domain. A series of studies concentrate on improving peak signal noise ratio (PSNR) by using much deeper layers, which are not friendly to constrained resources. Pursuing a trade-off between the restoration cap...

Full description

Saved in:
Bibliographic Details
Published in2020 25th International Conference on Pattern Recognition (ICPR) pp. 59 - 64
Main Authors Chu, Xiangxiang, Zhang, Bo, Ma, Hailong, Xu, Ruijun, Li, Qingyuan
Format Conference Proceeding
LanguageEnglish
Published IEEE 10.01.2021
Subjects
Online AccessGet full text
DOI10.1109/ICPR48806.2021.9413080

Cover

Loading…
Abstract Deep convolutional neural networks demonstrate impressive results in the super-resolution domain. A series of studies concentrate on improving peak signal noise ratio (PSNR) by using much deeper layers, which are not friendly to constrained resources. Pursuing a trade-off between the restoration capacity and the simplicity of models is still non-trivial. Recent contributions are struggling to manually maximize this balance, while our work achieves the same goal automatically with neural architecture search. Specifically, we handle super-resolution with a multi-objective approach. We also propose an elastic search tactic at both micro and macro level, based on a hybrid controller that profits from evolutionary computation and reinforcement learning. Quantitative experiments help us to draw a conclusion that our generated models dominate most of the state-of-the-art methods with respect to the individual FLOPS.
AbstractList Deep convolutional neural networks demonstrate impressive results in the super-resolution domain. A series of studies concentrate on improving peak signal noise ratio (PSNR) by using much deeper layers, which are not friendly to constrained resources. Pursuing a trade-off between the restoration capacity and the simplicity of models is still non-trivial. Recent contributions are struggling to manually maximize this balance, while our work achieves the same goal automatically with neural architecture search. Specifically, we handle super-resolution with a multi-objective approach. We also propose an elastic search tactic at both micro and macro level, based on a hybrid controller that profits from evolutionary computation and reinforcement learning. Quantitative experiments help us to draw a conclusion that our generated models dominate most of the state-of-the-art methods with respect to the individual FLOPS.
Author Chu, Xiangxiang
Ma, Hailong
Li, Qingyuan
Xu, Ruijun
Zhang, Bo
Author_xml – sequence: 1
  givenname: Xiangxiang
  surname: Chu
  fullname: Chu, Xiangxiang
  email: chuxiangxiang@xiaomi.com
  organization: Xiaomi AI Lab,Beijing,China
– sequence: 2
  givenname: Bo
  surname: Zhang
  fullname: Zhang, Bo
  email: zhangbo11@xiaomi.com
  organization: Xiaomi AI Lab,Beijing,China
– sequence: 3
  givenname: Hailong
  surname: Ma
  fullname: Ma, Hailong
  email: mahailong@xiaomi.com
  organization: Xiaomi AI Lab,Beijing,China
– sequence: 4
  givenname: Ruijun
  surname: Xu
  fullname: Xu, Ruijun
  email: xuruijun@xiaomi.com
  organization: Xiaomi AI Lab,Beijing,China
– sequence: 5
  givenname: Qingyuan
  surname: Li
  fullname: Li, Qingyuan
  email: liqingyuan@xiaomi.com
  organization: Xiaomi AI Lab,Beijing,China
BookMark eNotT91KwzAYjaAXbvoEguQBbM2XrzbJZSlOB8XJptcja77aQG1HmjJ8eyvu5vxwDgfOgl32Q0-M3YNIAYR5XJfv20xrkadSSEhNBii0uGALUFLDHGi8ZpuVHeMDL-p6CjYSt73jlf9q44n-kO-mI4VkS-PQTdEPPT_52PI3mtsdL0Ld-kh1nALxHdnZ3rCrxnYj3Z55yT5Xzx_la1JtXtZlUSVeCoyJytGhEsKpRtiGFNLBoEFonAOjDoqENTp7AtCIucpUnRsnlZ0V4XykwSW7-9_1RLQ_Bv9tw8_-_BF_ARtVS4o
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICPR48806.2021.9413080
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728188083
9781728188089
EndPage 64
ExternalDocumentID 9413080
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-763d3700d7f0afe73eb93931fdd197b7e0a9845118336747c69d27a747e3941f3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:42 EDT 2023
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-763d3700d7f0afe73eb93931fdd197b7e0a9845118336747c69d27a747e3941f3
PageCount 6
ParticipantIDs ieee_primary_9413080
PublicationCentury 2000
PublicationDate 2021-Jan.-10
PublicationDateYYYYMMDD 2021-01-10
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-Jan.-10
  day: 10
PublicationDecade 2020
PublicationTitle 2020 25th International Conference on Pattern Recognition (ICPR)
PublicationTitleAbbrev ICPR
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.5120234
Snippet Deep convolutional neural networks demonstrate impressive results in the super-resolution domain. A series of studies concentrate on improving peak signal...
SourceID ieee
SourceType Publisher
StartPage 59
SubjectTerms Computer architecture
Image coding
Performance evaluation
PSNR
Reinforcement learning
Superresolution
Training
Title Fast, Accurate and Lightweight Super-Resolution with Neural Architecture Search
URI https://ieeexplore.ieee.org/document/9413080
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA1zTz6pbOKdPPi4dEljm-ZxDMcUL0Md7G3kCqJ0Y2sR_PXma-u84INvoRTSJl_z9Zyc7wShc6e0otoLorylJPzfMiKzRBMJ1udGh5iylcr3Lh1PL65nyayFeptaGOdcJT5zETSrvXy7MCVQZX0JK24WAPpWAG51rVZT9Muo7F8NJw8QjiA8iFnU3Pzj1JQqaYx20O1nd7VW5CUqCx2Z919OjP99nl3U_SrPw5NN4tlDLZd30P1IrYseHhhTgvsDVrnFN4C83yryEz-WS7ciwNbXsYaBgcXgzaFe8eDbdgKuFchdNB1dPg3HpDktgTzHlBckLBSWC0qt8FR5J7jTkkvOvLVMCi0cVTIDN7KM8zSACJNKGwsVWo6HF_F8H7XzRe4OEDYmYTbjKo1NQIs60UJzaT2kuzh8r-wQdWAw5svaEGPejMPR35eP0TZMCPAWjJ6gdrEq3WnI5IU-q6bwA81Cnsg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA1jPuiTyiZ-mwcfly5pbNM8juHYdJtDN9jbyFdBlG3MFsFfb25bP_HBt1AKaZPb3N6Tc04QunRKK6pTQVRqKfH_t4zIJNJEgvW50T6mbMHyHcf92dXNPJrXUOtTC-OcK8hnLoBmsZdvVyYHqKwtYcVNfIG-FYEYt1RrVbJfRmV70J3cQ0AC9SBkQXX7j3NTirTR20Wjjw5LtshTkGc6MG-_vBj_-0R7qPkl0MOTz9Szj2pu2UB3PfWStXDHmBz8H7BaWjyE2vu1gD_xQ752GwJ4fRltGDBYDO4c6hl3vm0o4JKD3ESz3vW02yfVeQnkMaQ8I36psFxQakVKVeoEd1pyyVlqLZNCC0eVTMCPLOE89mWEiaUNhfItx_2LpPwA1ZerpTtE2JiI2YSrODS-XtSRFppLm0LCC_0Xy45QAwZjsS4tMRbVOBz_ffkCbfeno-FiOBjfnqAdmBxAMRg9RfVsk7szn9czfV5M5ztGmqIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+25th+International+Conference+on+Pattern+Recognition+%28ICPR%29&rft.atitle=Fast%2C+Accurate+and+Lightweight+Super-Resolution+with+Neural+Architecture+Search&rft.au=Chu%2C+Xiangxiang&rft.au=Zhang%2C+Bo&rft.au=Ma%2C+Hailong&rft.au=Xu%2C+Ruijun&rft.date=2021-01-10&rft.pub=IEEE&rft.spage=59&rft.epage=64&rft_id=info:doi/10.1109%2FICPR48806.2021.9413080&rft.externalDocID=9413080