Fast, Accurate and Lightweight Super-Resolution with Neural Architecture Search
Deep convolutional neural networks demonstrate impressive results in the super-resolution domain. A series of studies concentrate on improving peak signal noise ratio (PSNR) by using much deeper layers, which are not friendly to constrained resources. Pursuing a trade-off between the restoration cap...
Saved in:
Published in | 2020 25th International Conference on Pattern Recognition (ICPR) pp. 59 - 64 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
10.01.2021
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ICPR48806.2021.9413080 |
Cover
Loading…
Abstract | Deep convolutional neural networks demonstrate impressive results in the super-resolution domain. A series of studies concentrate on improving peak signal noise ratio (PSNR) by using much deeper layers, which are not friendly to constrained resources. Pursuing a trade-off between the restoration capacity and the simplicity of models is still non-trivial. Recent contributions are struggling to manually maximize this balance, while our work achieves the same goal automatically with neural architecture search. Specifically, we handle super-resolution with a multi-objective approach. We also propose an elastic search tactic at both micro and macro level, based on a hybrid controller that profits from evolutionary computation and reinforcement learning. Quantitative experiments help us to draw a conclusion that our generated models dominate most of the state-of-the-art methods with respect to the individual FLOPS. |
---|---|
AbstractList | Deep convolutional neural networks demonstrate impressive results in the super-resolution domain. A series of studies concentrate on improving peak signal noise ratio (PSNR) by using much deeper layers, which are not friendly to constrained resources. Pursuing a trade-off between the restoration capacity and the simplicity of models is still non-trivial. Recent contributions are struggling to manually maximize this balance, while our work achieves the same goal automatically with neural architecture search. Specifically, we handle super-resolution with a multi-objective approach. We also propose an elastic search tactic at both micro and macro level, based on a hybrid controller that profits from evolutionary computation and reinforcement learning. Quantitative experiments help us to draw a conclusion that our generated models dominate most of the state-of-the-art methods with respect to the individual FLOPS. |
Author | Chu, Xiangxiang Ma, Hailong Li, Qingyuan Xu, Ruijun Zhang, Bo |
Author_xml | – sequence: 1 givenname: Xiangxiang surname: Chu fullname: Chu, Xiangxiang email: chuxiangxiang@xiaomi.com organization: Xiaomi AI Lab,Beijing,China – sequence: 2 givenname: Bo surname: Zhang fullname: Zhang, Bo email: zhangbo11@xiaomi.com organization: Xiaomi AI Lab,Beijing,China – sequence: 3 givenname: Hailong surname: Ma fullname: Ma, Hailong email: mahailong@xiaomi.com organization: Xiaomi AI Lab,Beijing,China – sequence: 4 givenname: Ruijun surname: Xu fullname: Xu, Ruijun email: xuruijun@xiaomi.com organization: Xiaomi AI Lab,Beijing,China – sequence: 5 givenname: Qingyuan surname: Li fullname: Li, Qingyuan email: liqingyuan@xiaomi.com organization: Xiaomi AI Lab,Beijing,China |
BookMark | eNotT91KwzAYjaAXbvoEguQBbM2XrzbJZSlOB8XJptcja77aQG1HmjJ8eyvu5vxwDgfOgl32Q0-M3YNIAYR5XJfv20xrkadSSEhNBii0uGALUFLDHGi8ZpuVHeMDL-p6CjYSt73jlf9q44n-kO-mI4VkS-PQTdEPPT_52PI3mtsdL0Ld-kh1nALxHdnZ3rCrxnYj3Z55yT5Xzx_la1JtXtZlUSVeCoyJytGhEsKpRtiGFNLBoEFonAOjDoqENTp7AtCIucpUnRsnlZ0V4XykwSW7-9_1RLQ_Bv9tw8_-_BF_ARtVS4o |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICPR48806.2021.9413080 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1728188083 9781728188089 |
EndPage | 64 |
ExternalDocumentID | 9413080 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i203t-763d3700d7f0afe73eb93931fdd197b7e0a9845118336747c69d27a747e3941f3 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:38:42 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-763d3700d7f0afe73eb93931fdd197b7e0a9845118336747c69d27a747e3941f3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_9413080 |
PublicationCentury | 2000 |
PublicationDate | 2021-Jan.-10 |
PublicationDateYYYYMMDD | 2021-01-10 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-Jan.-10 day: 10 |
PublicationDecade | 2020 |
PublicationTitle | 2020 25th International Conference on Pattern Recognition (ICPR) |
PublicationTitleAbbrev | ICPR |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 2.5120234 |
Snippet | Deep convolutional neural networks demonstrate impressive results in the super-resolution domain. A series of studies concentrate on improving peak signal... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 59 |
SubjectTerms | Computer architecture Image coding Performance evaluation PSNR Reinforcement learning Superresolution Training |
Title | Fast, Accurate and Lightweight Super-Resolution with Neural Architecture Search |
URI | https://ieeexplore.ieee.org/document/9413080 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA1zTz6pbOKdPPi4dEljm-ZxDMcUL0Md7G3kCqJ0Y2sR_PXma-u84INvoRTSJl_z9Zyc7wShc6e0otoLorylJPzfMiKzRBMJ1udGh5iylcr3Lh1PL65nyayFeptaGOdcJT5zETSrvXy7MCVQZX0JK24WAPpWAG51rVZT9Muo7F8NJw8QjiA8iFnU3Pzj1JQqaYx20O1nd7VW5CUqCx2Z919OjP99nl3U_SrPw5NN4tlDLZd30P1IrYseHhhTgvsDVrnFN4C83yryEz-WS7ciwNbXsYaBgcXgzaFe8eDbdgKuFchdNB1dPg3HpDktgTzHlBckLBSWC0qt8FR5J7jTkkvOvLVMCi0cVTIDN7KM8zSACJNKGwsVWo6HF_F8H7XzRe4OEDYmYTbjKo1NQIs60UJzaT2kuzh8r-wQdWAw5svaEGPejMPR35eP0TZMCPAWjJ6gdrEq3WnI5IU-q6bwA81Cnsg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA1jPuiTyiZ-mwcfly5pbNM8juHYdJtDN9jbyFdBlG3MFsFfb25bP_HBt1AKaZPb3N6Tc04QunRKK6pTQVRqKfH_t4zIJNJEgvW50T6mbMHyHcf92dXNPJrXUOtTC-OcK8hnLoBmsZdvVyYHqKwtYcVNfIG-FYEYt1RrVbJfRmV70J3cQ0AC9SBkQXX7j3NTirTR20Wjjw5LtshTkGc6MG-_vBj_-0R7qPkl0MOTz9Szj2pu2UB3PfWStXDHmBz8H7BaWjyE2vu1gD_xQ752GwJ4fRltGDBYDO4c6hl3vm0o4JKD3ESz3vW02yfVeQnkMaQ8I36psFxQakVKVeoEd1pyyVlqLZNCC0eVTMCPLOE89mWEiaUNhfItx_2LpPwA1ZerpTtE2JiI2YSrODS-XtSRFppLm0LCC_0Xy45QAwZjsS4tMRbVOBz_ffkCbfeno-FiOBjfnqAdmBxAMRg9RfVsk7szn9czfV5M5ztGmqIQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+25th+International+Conference+on+Pattern+Recognition+%28ICPR%29&rft.atitle=Fast%2C+Accurate+and+Lightweight+Super-Resolution+with+Neural+Architecture+Search&rft.au=Chu%2C+Xiangxiang&rft.au=Zhang%2C+Bo&rft.au=Ma%2C+Hailong&rft.au=Xu%2C+Ruijun&rft.date=2021-01-10&rft.pub=IEEE&rft.spage=59&rft.epage=64&rft_id=info:doi/10.1109%2FICPR48806.2021.9413080&rft.externalDocID=9413080 |