Seizure Detection Using Power Spectral Density via Hyperdimensional Computing

Hyperdimensional (HD) computing holds promise for classifying two groups of data. This paper explores seizure detection from electroencephalogram (EEG) from subjects with epilepsy using HD computing based on power spectral density (PSD) features. Publicly available intra-cranial EEG (iEEG) data coll...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) pp. 7858 - 7862
Main Authors Ge, Lulu, Parhi, Keshab K.
Format Conference Proceeding
LanguageEnglish
Published IEEE 06.06.2021
Subjects
Online AccessGet full text
ISSN2379-190X
DOI10.1109/ICASSP39728.2021.9414083

Cover

Loading…
Abstract Hyperdimensional (HD) computing holds promise for classifying two groups of data. This paper explores seizure detection from electroencephalogram (EEG) from subjects with epilepsy using HD computing based on power spectral density (PSD) features. Publicly available intra-cranial EEG (iEEG) data collected from 4 dogs and 8 human patients in the Kaggle seizure detection contest are used in this paper. This paper explores two methods for classification. First, few ranked PSD features from small number of channels from a prior classification are used in the context of HD classification. Second, all PSD features extracted from all channels are used as features for HD classification. It is shown that for about half the subjects small number features outperform all features in the context of HD classification, and for the other half, all features outperform small number of features. HD classification achieves above 95% accuracy for six of the 12 subjects, and between 85-95% accuracy for 4 subjects. For two subjects, the classification accuracy using HD computing is not as good as classical approaches such as support vector machine classifiers.
AbstractList Hyperdimensional (HD) computing holds promise for classifying two groups of data. This paper explores seizure detection from electroencephalogram (EEG) from subjects with epilepsy using HD computing based on power spectral density (PSD) features. Publicly available intra-cranial EEG (iEEG) data collected from 4 dogs and 8 human patients in the Kaggle seizure detection contest are used in this paper. This paper explores two methods for classification. First, few ranked PSD features from small number of channels from a prior classification are used in the context of HD classification. Second, all PSD features extracted from all channels are used as features for HD classification. It is shown that for about half the subjects small number features outperform all features in the context of HD classification, and for the other half, all features outperform small number of features. HD classification achieves above 95% accuracy for six of the 12 subjects, and between 85-95% accuracy for 4 subjects. For two subjects, the classification accuracy using HD computing is not as good as classical approaches such as support vector machine classifiers.
Author Ge, Lulu
Parhi, Keshab K.
Author_xml – sequence: 1
  givenname: Lulu
  surname: Ge
  fullname: Ge, Lulu
  organization: University of Minnesota
– sequence: 2
  givenname: Keshab K.
  surname: Parhi
  fullname: Parhi, Keshab K.
  organization: University of Minnesota
BookMark eNotj9tKw0AYhFdRsK19Am_2BRL_Pe9eSj1UqFiIBe9KDn9kpTmwSZX49K7Yq4FvmGFmTi7arkVCKIOUMXC3z6u7LNsKZ7hNOXCWOskkWHFGls5YFjEzGpQ6JzMujEuYg_crMh-GTwCwRtoZecnQ_xwD0nscsRx919Ld4NsPuu2-MdCsjzDkh2i3gx8n-uVzup56DJVv_lDXRnPVNf1xjKlrclnnhwGXJ12Q3ePD22qdbF6f4thN4jmIMdGoWKWtKUvmKqtqxRVqpqUEV3NXgsbCYS61BqcKaSRqUTFXa6WVKoSuxILc_Pd6RNz3wTd5mPan9-IXfmdRjA
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP39728.2021.9414083
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781728176055
1728176050
EISSN 2379-190X
EndPage 7862
ExternalDocumentID 9414083
Genre orig-research
GroupedDBID 23M
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-6e51d687cc19d85f525e6164409f29c06eb9ea466095b474e63d19f65655b36d3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:39:01 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-6e51d687cc19d85f525e6164409f29c06eb9ea466095b474e63d19f65655b36d3
PageCount 5
ParticipantIDs ieee_primary_9414083
PublicationCentury 2000
PublicationDate 2021-June-6
PublicationDateYYYYMMDD 2021-06-06
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-June-6
  day: 06
PublicationDecade 2020
PublicationTitle Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998)
PublicationTitleAbbrev ICASSP
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008748
Score 2.2601135
Snippet Hyperdimensional (HD) computing holds promise for classifying two groups of data. This paper explores seizure detection from electroencephalogram (EEG) from...
SourceID ieee
SourceType Publisher
StartPage 7858
SubjectTerms and seizure detection
Conferences
Dogs
Electroencephalography
Epilepsy
Feature extraction
Hyperdimensional (HD) computing
power spectral density (PSD)
Signal processing
Support vector machines
Title Seizure Detection Using Power Spectral Density via Hyperdimensional Computing
URI https://ieeexplore.ieee.org/document/9414083
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LawIxEA7qqb30oaVvcuixq5vnJsdiK7ZgEazgTTbJLEjpWmS3B399k121D3robckyJCQhk2_yzXwI3bBMUscYRI7KELpJSaSoTSJLnaRpCmlMQjby6FkOp_xpJmYNdLvLhQGAinwG3fBZveW7pS1DqKynuYcDijVR0wO3Oldrd-qqhKstUyfWvcf-3WQy9s6WBv4WJd2N7Q8RlcqHDA7QaNt7TR157ZaF6dr1r8KM_x3eIep8Zevh8c4PHaEG5Mdo_1uhwTYaTWCxLleA76GouFc5rrgCeBxE0nAQoQ8RD_87DxwN_LFI8dAjVL973kJTuK7jWgDCW3XQdPDw0h9GGyGFaEFjVkQSBHFSJdYS7ZTIBBUgPU7y2C6j2sYSjIaUy1B8zvCEg2SO6Mxf9YQwTDp2glr5ModThIVjNM4INdp4A81TrkhmrAcxyqkM4jPUDhMzf69rZcw3c3L-d_MF2guLU1Gv5CVqFasSrryTL8x1tbqfZd6nJQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTsJAFJ0gLtSNDzC-nYVLC-28OrM0KClKCQmQsCNt5zYhxmJI64Kvd6YFfMSFu2aamzYzk945t-fcg9AdTQXRlIKjibClm8hzJEl8JyFakCiCyPWsGjkciGDCnqd8WkP3Wy0MAJTkM2jZy_Jfvl4khS2VtRUzcEDSHbTLrRi3Umttv7vSZ3LD1XFVu9d5GI2GJt0Sy-AiXmsd_cNGpcwi3UMUbp5fkUdeW0Uet5LVr9aM_33BI9T80uvh4TYTHaMaZCfo4FurwQYKRzBfFUvAj5CX7KsMl2wBPLQ2adja0Nuah7mdWZYG_phHODAY1eyfNztkD-y4soAwUU006T6NO4GztlJw5sSluSOAe1pIP0k8pSVPOeEgDFIy6C4lKnEFxAoiJmz7uZj5DATVnkrNYY_zmApNT1E9W2RwhjDXlLipR2IVmwDFIia9NE4MjJFapuCeo4admNl71S1jtp6Ti7-Hb9FeMA77s35v8HKJ9u1ClUQscYXq-bKAa5Py8_imXOlPTQKqbQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=Seizure+Detection+Using+Power+Spectral+Density+via+Hyperdimensional+Computing&rft.au=Ge%2C+Lulu&rft.au=Parhi%2C+Keshab+K.&rft.date=2021-06-06&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=7858&rft.epage=7862&rft_id=info:doi/10.1109%2FICASSP39728.2021.9414083&rft.externalDocID=9414083