Seizure Detection Using Power Spectral Density via Hyperdimensional Computing
Hyperdimensional (HD) computing holds promise for classifying two groups of data. This paper explores seizure detection from electroencephalogram (EEG) from subjects with epilepsy using HD computing based on power spectral density (PSD) features. Publicly available intra-cranial EEG (iEEG) data coll...
Saved in:
Published in | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) pp. 7858 - 7862 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
06.06.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2379-190X |
DOI | 10.1109/ICASSP39728.2021.9414083 |
Cover
Loading…
Abstract | Hyperdimensional (HD) computing holds promise for classifying two groups of data. This paper explores seizure detection from electroencephalogram (EEG) from subjects with epilepsy using HD computing based on power spectral density (PSD) features. Publicly available intra-cranial EEG (iEEG) data collected from 4 dogs and 8 human patients in the Kaggle seizure detection contest are used in this paper. This paper explores two methods for classification. First, few ranked PSD features from small number of channels from a prior classification are used in the context of HD classification. Second, all PSD features extracted from all channels are used as features for HD classification. It is shown that for about half the subjects small number features outperform all features in the context of HD classification, and for the other half, all features outperform small number of features. HD classification achieves above 95% accuracy for six of the 12 subjects, and between 85-95% accuracy for 4 subjects. For two subjects, the classification accuracy using HD computing is not as good as classical approaches such as support vector machine classifiers. |
---|---|
AbstractList | Hyperdimensional (HD) computing holds promise for classifying two groups of data. This paper explores seizure detection from electroencephalogram (EEG) from subjects with epilepsy using HD computing based on power spectral density (PSD) features. Publicly available intra-cranial EEG (iEEG) data collected from 4 dogs and 8 human patients in the Kaggle seizure detection contest are used in this paper. This paper explores two methods for classification. First, few ranked PSD features from small number of channels from a prior classification are used in the context of HD classification. Second, all PSD features extracted from all channels are used as features for HD classification. It is shown that for about half the subjects small number features outperform all features in the context of HD classification, and for the other half, all features outperform small number of features. HD classification achieves above 95% accuracy for six of the 12 subjects, and between 85-95% accuracy for 4 subjects. For two subjects, the classification accuracy using HD computing is not as good as classical approaches such as support vector machine classifiers. |
Author | Ge, Lulu Parhi, Keshab K. |
Author_xml | – sequence: 1 givenname: Lulu surname: Ge fullname: Ge, Lulu organization: University of Minnesota – sequence: 2 givenname: Keshab K. surname: Parhi fullname: Parhi, Keshab K. organization: University of Minnesota |
BookMark | eNotj9tKw0AYhFdRsK19Am_2BRL_Pe9eSj1UqFiIBe9KDn9kpTmwSZX49K7Yq4FvmGFmTi7arkVCKIOUMXC3z6u7LNsKZ7hNOXCWOskkWHFGls5YFjEzGpQ6JzMujEuYg_crMh-GTwCwRtoZecnQ_xwD0nscsRx919Ld4NsPuu2-MdCsjzDkh2i3gx8n-uVzup56DJVv_lDXRnPVNf1xjKlrclnnhwGXJ12Q3ePD22qdbF6f4thN4jmIMdGoWKWtKUvmKqtqxRVqpqUEV3NXgsbCYS61BqcKaSRqUTFXa6WVKoSuxILc_Pd6RNz3wTd5mPan9-IXfmdRjA |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICASSP39728.2021.9414083 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9781728176055 1728176050 |
EISSN | 2379-190X |
EndPage | 7862 |
ExternalDocumentID | 9414083 |
Genre | orig-research |
GroupedDBID | 23M 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i203t-6e51d687cc19d85f525e6164409f29c06eb9ea466095b474e63d19f65655b36d3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:39:01 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-6e51d687cc19d85f525e6164409f29c06eb9ea466095b474e63d19f65655b36d3 |
PageCount | 5 |
ParticipantIDs | ieee_primary_9414083 |
PublicationCentury | 2000 |
PublicationDate | 2021-June-6 |
PublicationDateYYYYMMDD | 2021-06-06 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-June-6 day: 06 |
PublicationDecade | 2020 |
PublicationTitle | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) |
PublicationTitleAbbrev | ICASSP |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0008748 |
Score | 2.2601135 |
Snippet | Hyperdimensional (HD) computing holds promise for classifying two groups of data. This paper explores seizure detection from electroencephalogram (EEG) from... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 7858 |
SubjectTerms | and seizure detection Conferences Dogs Electroencephalography Epilepsy Feature extraction Hyperdimensional (HD) computing power spectral density (PSD) Signal processing Support vector machines |
Title | Seizure Detection Using Power Spectral Density via Hyperdimensional Computing |
URI | https://ieeexplore.ieee.org/document/9414083 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LawIxEA7qqb30oaVvcuixq5vnJsdiK7ZgEazgTTbJLEjpWmS3B399k121D3robckyJCQhk2_yzXwI3bBMUscYRI7KELpJSaSoTSJLnaRpCmlMQjby6FkOp_xpJmYNdLvLhQGAinwG3fBZveW7pS1DqKynuYcDijVR0wO3Oldrd-qqhKstUyfWvcf-3WQy9s6WBv4WJd2N7Q8RlcqHDA7QaNt7TR157ZaF6dr1r8KM_x3eIep8Zevh8c4PHaEG5Mdo_1uhwTYaTWCxLleA76GouFc5rrgCeBxE0nAQoQ8RD_87DxwN_LFI8dAjVL973kJTuK7jWgDCW3XQdPDw0h9GGyGFaEFjVkQSBHFSJdYS7ZTIBBUgPU7y2C6j2sYSjIaUy1B8zvCEg2SO6Mxf9YQwTDp2glr5ModThIVjNM4INdp4A81TrkhmrAcxyqkM4jPUDhMzf69rZcw3c3L-d_MF2guLU1Gv5CVqFasSrryTL8x1tbqfZd6nJQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTsJAFJ0gLtSNDzC-nYVLC-28OrM0KClKCQmQsCNt5zYhxmJI64Kvd6YFfMSFu2aamzYzk945t-fcg9AdTQXRlIKjibClm8hzJEl8JyFakCiCyPWsGjkciGDCnqd8WkP3Wy0MAJTkM2jZy_Jfvl4khS2VtRUzcEDSHbTLrRi3Umttv7vSZ3LD1XFVu9d5GI2GJt0Sy-AiXmsd_cNGpcwi3UMUbp5fkUdeW0Uet5LVr9aM_33BI9T80uvh4TYTHaMaZCfo4FurwQYKRzBfFUvAj5CX7KsMl2wBPLQ2adja0Nuah7mdWZYG_phHODAY1eyfNztkD-y4soAwUU006T6NO4GztlJw5sSluSOAe1pIP0k8pSVPOeEgDFIy6C4lKnEFxAoiJmz7uZj5DATVnkrNYY_zmApNT1E9W2RwhjDXlLipR2IVmwDFIia9NE4MjJFapuCeo4admNl71S1jtp6Ti7-Hb9FeMA77s35v8HKJ9u1ClUQscYXq-bKAa5Py8_imXOlPTQKqbQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=Seizure+Detection+Using+Power+Spectral+Density+via+Hyperdimensional+Computing&rft.au=Ge%2C+Lulu&rft.au=Parhi%2C+Keshab+K.&rft.date=2021-06-06&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=7858&rft.epage=7862&rft_id=info:doi/10.1109%2FICASSP39728.2021.9414083&rft.externalDocID=9414083 |