Towards Decoding Selective Attention from Single-Trial EEG Data in Cochlear Implant users based on Deep Neural Networks

Electroencephalography (EEG) data can be used to decode an attended speech source in normal-hearing (NH) listeners. One application of this technology consists of identifying the target speaker in a cocktail party-like scenario and activate speech enhancement algorithms in cochlear implants (CIs). I...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) pp. 8708 - 8712
Main Authors Nogueira, Waldo, Dolhopiatenko, Hanna
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2020
Subjects
Online AccessGet full text
ISSN2379-190X
DOI10.1109/ICASSP40776.2020.9054021

Cover

Abstract Electroencephalography (EEG) data can be used to decode an attended speech source in normal-hearing (NH) listeners. One application of this technology consists of identifying the target speaker in a cocktail party-like scenario and activate speech enhancement algorithms in cochlear implants (CIs). It has been shown that in CIs it is possible to decode selective attention, although the worse spectral resolution and the electrical artifacts introduced by a CI decrease the accuracy of linear decoders in comparison to NH subjects. The goal of this work was to investigate the use of non-linear models based on deep neural networks (DNNs) to improve the selective attention decoding accuracy in CI users. The hypothesis is that a non-linear decoder may be able to better separate the electrical artifact from the neural responses. Results confirm the feasibility to decode selective attention by means of single-trial EEG data in NH and CI users using a high-density EEG. Moreover, we show that a simple DNN architecture that directly classifies the locus of attention based on the EEG and a mixture of the incoming speech stream envelopes can be used to decode selective attention in CI users.
AbstractList Electroencephalography (EEG) data can be used to decode an attended speech source in normal-hearing (NH) listeners. One application of this technology consists of identifying the target speaker in a cocktail party-like scenario and activate speech enhancement algorithms in cochlear implants (CIs). It has been shown that in CIs it is possible to decode selective attention, although the worse spectral resolution and the electrical artifacts introduced by a CI decrease the accuracy of linear decoders in comparison to NH subjects. The goal of this work was to investigate the use of non-linear models based on deep neural networks (DNNs) to improve the selective attention decoding accuracy in CI users. The hypothesis is that a non-linear decoder may be able to better separate the electrical artifact from the neural responses. Results confirm the feasibility to decode selective attention by means of single-trial EEG data in NH and CI users using a high-density EEG. Moreover, we show that a simple DNN architecture that directly classifies the locus of attention based on the EEG and a mixture of the incoming speech stream envelopes can be used to decode selective attention in CI users.
Author Nogueira, Waldo
Dolhopiatenko, Hanna
Author_xml – sequence: 1
  givenname: Waldo
  surname: Nogueira
  fullname: Nogueira, Waldo
  organization: Medical University Hannover and Cluster of Excellence "Hearing4all"
– sequence: 2
  givenname: Hanna
  surname: Dolhopiatenko
  fullname: Dolhopiatenko, Hanna
  organization: Medical University Hannover and Cluster of Excellence "Hearing4all"
BookMark eNotkM1OAjEUhavRRECewE1fYPD2bzpdEkAkIWgymLgjLXNHq8MMaYvEt3cSWZ3FyXeS7wzJTdu1SAhlMGEMzONqNi3LVwla5xMOHCYGlATOrsjY6IIpMJDngqlrMuBCm4wZeL8jwxi_AKDQshiQ87Y721BFOsd9V_n2g5bY4D75H6TTlLBNvmtpHboDLfu2wWwbvG3oYrGkc5ss9S2ddfvPBm2gq8OxsW2ip4ghUmcjVrSn54hHusFT6LkNpnMXvuM9ua1tE3F8yRF5e1psZ8_Z-mXZa60zz0GkLHfWGFU557A3ETWrpXROsyJ3da4BeKVqbaXKjXSgNNOiUkbXKBXnXJhCjMjD_65HxN0x-IMNv7vLT-IPUh5fcw
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP40776.2020.9054021
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781509066315
1509066314
EISSN 2379-190X
EndPage 8712
ExternalDocumentID 9054021
Genre orig-research
GroupedDBID 23M
29P
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-6ba995dbbbe6633f1f44bb7186bf67002d5f7a45694b057173d597fe452223983
IEDL.DBID RIE
IngestDate Wed Aug 27 02:46:48 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-6ba995dbbbe6633f1f44bb7186bf67002d5f7a45694b057173d597fe452223983
PageCount 5
ParticipantIDs ieee_primary_9054021
PublicationCentury 2000
PublicationDate 2020-May
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-May
PublicationDecade 2020
PublicationTitle Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998)
PublicationTitleAbbrev ICASSP
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008748
Score 2.1281312
Snippet Electroencephalography (EEG) data can be used to decode an attended speech source in normal-hearing (NH) listeners. One application of this technology consists...
SourceID ieee
SourceType Publisher
StartPage 8708
SubjectTerms Brain modeling
Cochlear implant
Cochlear implants
Decoding
deep neural network
EEG
Electroencephalography
Neural networks
selective attention
Signal processing
Speech enhancement
Title Towards Decoding Selective Attention from Single-Trial EEG Data in Cochlear Implant users based on Deep Neural Networks
URI https://ieeexplore.ieee.org/document/9054021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La8JAEF6sp_bSh5a-2UOPTcxj89ijqK0tKEIUvEk2O0ulJUqNFPrrO5OofdBDbyHZJWFn2JnZfN83jN1qk3o6CMGKnFRaInAcS2YRWJ4ITBwITxtD5OTBMOxPxNM0mNbY3Y4LAwAl-Axsuiz_5etFtqajspak_IJY43voZhVXa7frxpGIt0gdR7YeO-0kGQkSq8Ei0HPszdwfTVTKGHJ_yAbbt1fQkRd7XSg7-_glzPjfzztizS-2Hh_t4tAxq0F-wg6-CQ022Pu4RMeueBerTRrFk7L_DW51vF0UFeSRE9WEJ_j0FawxOSbv9R54Ny1SPs95Z5E9U48JToLCaA9O5xsrTmFQc5zdBVhy0vrAecMKXL5qssl9b9zpW5uWC9bcc_zCClUqZaCVUoCpiG9cI4RSGL9CZYjQg3Y1UYpJlxQKMz038jVWJAZIl52UBP1TVs8XOZwxLrIs0gGpW4lUuLFULhXEbuQADgXfP2cNWsLZslLVmG1W7-Lv25dsn8xYQQ2vWL14W8M1pgOFuin94BMzp7Q7
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELUqOAAXlhax4wNHnGaxk_hYdaGFtqqUVOqtimNbVKC0oqmQ-Ho8SVsWceAWJR4l8lieGee9NwjdSZ24kvmKBHbCCWW2TXgaKOJSpkNGXak1kJMHQ787po8TNqmg-y0XRilVgM-UBZfFv3w5T1dwVFbnkF8Aa3zXxH3KSrbWdt8NAxpusDo2r_eajSgaUZCrMWWga1tr6x9tVIoo0jlEg837S_DIi7XKhZV-_JJm_O8HHqHaF18Pj7aR6BhVVHaCDr5JDVbRe1zgY5e4ZepNGIWjogOO2exwI89L0CMGsgmOzNNXRWJYmrjdfsCtJE_wLMPNefoMXSYwSAobj2A44VhiCIQSG-uWUgsMah_GbljCy5c1NO6042aXrJsukJlreznxRcI5k0IIZZIRTzuaUiFMBPOFBkqP8awOEpN2cSpMrucEnjQ1iVagzA5agt4p2snmmTpDmKZpIBnoW9GEOiEXDpTETmArM1R53jmqwhROF6WuxnQ9exd_375Fe9140J_2e8OnS7QPLi2Bh1doJ39bqWuTHOTiplgTn9I7t4g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=Towards+Decoding+Selective+Attention+from+Single-Trial+EEG+Data+in+Cochlear+Implant+users+based+on+Deep+Neural+Networks&rft.au=Nogueira%2C+Waldo&rft.au=Dolhopiatenko%2C+Hanna&rft.date=2020-05-01&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=8708&rft.epage=8712&rft_id=info:doi/10.1109%2FICASSP40776.2020.9054021&rft.externalDocID=9054021