Implementation of Kinematics Bicycle Model for Vehicle Localization using Android Sensors

The kinematics bicycle model is a useful model to perform dead reckoning of vehicles' or robots' dynamic locations. Normally it is implemented using inertial and vehicle odometry sensors. Recently, access to these sensors in the android smart phone could provide a low cost alternative for...

Full description

Saved in:
Bibliographic Details
Published in2020 11th IEEE Control and System Graduate Research Colloquium (ICSGRC) pp. 248 - 252
Main Authors Ng, K. M., Abdullah, S. A. C., Ahmad, A., Johari, J.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.08.2020
Subjects
Online AccessGet full text
DOI10.1109/ICSGRC49013.2020.9232453

Cover

Abstract The kinematics bicycle model is a useful model to perform dead reckoning of vehicles' or robots' dynamic locations. Normally it is implemented using inertial and vehicle odometry sensors. Recently, access to these sensors in the android smart phone could provide a low cost alternative for vehicle localization. Platform such as MATLAB mobile provides functions to access phone sensors. Hence, the objective of this project is to develop vehicle localization by implementation of kinematic bicycle model (KBM) using the MATLAB mobile. Sensors from an android smart phone were accessed via the MATLAB mobile. The kinematics bicycle model is then implemented at two locations, located at Faculty of Engineering, Universiti Teknologi MARA (UiTM) Shah Alam and a residential area in Shah Alam, Malaysia. The position of the vehicle estimated using KBM is continuously logged. The mapped path produced using this logged points will be compared to the actual path to evaluate the performance in terms of mean absolute error (MAE) and root mean square error (RMSE). It was found that the results at the residential area have lower MAE and RMSE due to less multipath effects in the area.
AbstractList The kinematics bicycle model is a useful model to perform dead reckoning of vehicles' or robots' dynamic locations. Normally it is implemented using inertial and vehicle odometry sensors. Recently, access to these sensors in the android smart phone could provide a low cost alternative for vehicle localization. Platform such as MATLAB mobile provides functions to access phone sensors. Hence, the objective of this project is to develop vehicle localization by implementation of kinematic bicycle model (KBM) using the MATLAB mobile. Sensors from an android smart phone were accessed via the MATLAB mobile. The kinematics bicycle model is then implemented at two locations, located at Faculty of Engineering, Universiti Teknologi MARA (UiTM) Shah Alam and a residential area in Shah Alam, Malaysia. The position of the vehicle estimated using KBM is continuously logged. The mapped path produced using this logged points will be compared to the actual path to evaluate the performance in terms of mean absolute error (MAE) and root mean square error (RMSE). It was found that the results at the residential area have lower MAE and RMSE due to less multipath effects in the area.
Author Abdullah, S. A. C.
Ng, K. M.
Ahmad, A.
Johari, J.
Author_xml – sequence: 1
  givenname: K. M.
  surname: Ng
  fullname: Ng, K. M.
  organization: Universiti Teknologi MARA,Faculty of Electrical Engineering,Shah Alam,Malaysia
– sequence: 2
  givenname: S. A. C.
  surname: Abdullah
  fullname: Abdullah, S. A. C.
  organization: Universiti Teknologi MARA,Faculty of Electrical Engineering,Shah Alam,Malaysia
– sequence: 3
  givenname: A.
  surname: Ahmad
  fullname: Ahmad, A.
  organization: Universiti Teknologi MARA,Faculty of Electrical Engineering,Shah Alam,Malaysia
– sequence: 4
  givenname: J.
  surname: Johari
  fullname: Johari, J.
  organization: Universiti Teknologi MARA,Faculty of Electrical Engineering,Shah Alam,Malaysia
BookMark eNotj1FLwzAUhSPog5v-Al_yB1pzk65pHmfRWZwITgWfxm1yo4E2GW19mL_eyfZ0OB-cD86MnccUiTEOIgcQ5rapN6vXujACVC6FFLmRShYLdcZmoGUFCwUKLtln0-866ilOOIUUefL8KUTqD82O_C7Yve2IPydHHfdp4B_0Hf7JOlnswu9x9DOG-MWX0Q0pOL6hOKZhvGIXHruRrk85Z-8P92_1Y7Z-WTX1cp0FKdSUlbotvMBSoK9KRSirSpHTpNuSpDFYGu0ceAQE5dqqcMZaAgFa-1aiBzVnN0dvIKLtbgg9Dvvt6a36A9AgUZk
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICSGRC49013.2020.9232453
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728153131
9781728153131
EndPage 252
ExternalDocumentID 9232453
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-67b4f0a60af863ea2883ed7e7b6e299a697dd1fa1a13db84d9cce10177fb2af13
IEDL.DBID RIE
IngestDate Thu Jun 29 18:39:06 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-67b4f0a60af863ea2883ed7e7b6e299a697dd1fa1a13db84d9cce10177fb2af13
PageCount 5
ParticipantIDs ieee_primary_9232453
PublicationCentury 2000
PublicationDate 2020-Aug.
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-Aug.
PublicationDecade 2020
PublicationTitle 2020 11th IEEE Control and System Graduate Research Colloquium (ICSGRC)
PublicationTitleAbbrev ICSGRC
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7524798
Snippet The kinematics bicycle model is a useful model to perform dead reckoning of vehicles' or robots' dynamic locations. Normally it is implemented using inertial...
SourceID ieee
SourceType Publisher
StartPage 248
SubjectTerms android sensor
Autonomous vehicle localization
kinematics bicycle model
MATLAB Mobile
Title Implementation of Kinematics Bicycle Model for Vehicle Localization using Android Sensors
URI https://ieeexplore.ieee.org/document/9232453
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8MgGCVzJ09qNuPvcPBouzIYlKuLc_6YMc6ZeVqgfOiitmbrDvrXC203o_HgjTQkNPB9fUDf-x5Cx0QorTnlgZUQBcxoGShKbNABxYgwkrDE30MObnh_xC7HnXENnay0MABQkM8g9M3iX77JkoW_KmtJD_8duobWXJiVWq0lOSeSrYvu8PyuyxzAUXfua0dh1f2Hb0oBG70NNFgOWLJFXsJFrsPk81ctxv--0SZqfgv08O0KerZQDdIGeiwq_b5VYqIUZxZfuT1kUZN1jk-nyYcLEezNz16x26riB3j2QYOvPZxVckzsefBP2NMcs6nBQ3fIzWbzJhr1zu67_aByTgim7YjmARea2UjxSNmYU1DeUhiMAKE5OPxRXApjiFVEEWp0zIxMEvDJKaxuK0voNqqnWQo7CFMqjSKxYkYVbpOxchksYu2-dA7cdGcXNfy0TN7L4hiTakb2_n68j9b90pQMugNUz2cLOHSonuujYjm_AGFApK8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT8IwHG4QD3pSA8a3PXh0Y6Vdu14lIsgjRsDgibRrq0RlBsZB_3rbbWA0Hrw1TZo2fX19fN_vA-ACMSElxdQzXAceUZJ7AiPjhVoQxBRHJHbvkL0-bY3I7Tgcl8DlWgujtc7IZ9p3yewvXyXx0j2V1biD_xBvgE2L-yTM1Vorek7Aa-3G4Oa-QSzEYXvzqwd-UeCHc0oGHM0d0FtVmfNFXvxlKv3481c0xv-2aRdUvyV68G4NPnugpGcV8JjF-n0r5EQzmBjYsafILCrrAl5N4w87SaCzP3uF9rAKH_Szmzaw6wCtEGRCx4R_go7omEwVHNhrbjJfVMGoeT1stLzCO8Gb1gOcepRJYgJBA2EiirVwpsJaMc0k1RaBBOVMKWQEEggrGRHF41i75cmMrAuD8D4oz5KZPgAQY64EigRRIvObjIRdwyySdq-z8CbDQ1Bx3TJ5z8NjTIoeOfo7-xxstYa97qTb7neOwbYbppxPdwLK6XypTy3Gp_IsG9ovLwun_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+11th+IEEE+Control+and+System+Graduate+Research+Colloquium+%28ICSGRC%29&rft.atitle=Implementation+of+Kinematics+Bicycle+Model+for+Vehicle+Localization+using+Android+Sensors&rft.au=Ng%2C+K.+M.&rft.au=Abdullah%2C+S.+A.+C.&rft.au=Ahmad%2C+A.&rft.au=Johari%2C+J.&rft.date=2020-08-01&rft.pub=IEEE&rft.spage=248&rft.epage=252&rft_id=info:doi/10.1109%2FICSGRC49013.2020.9232453&rft.externalDocID=9232453