Hybrid Model-Based / Data-Driven Graph Transform for Image Coding

Transform coding to sparsify signal representations remains crucial in an image compression pipeline. While the Karhunen-Loève transform (KLT) computed from an empirical covariance matrix {\mathbf{\bar C}} is theoretically optimal for a stationary process, in practice, collecting sufficient statisti...

Full description

Saved in:
Bibliographic Details
Published inProceedings - International Conference on Image Processing pp. 3667 - 3671
Main Authors Bagheri, Saghar, Do, Tam Thuc, Cheung, Gene, Ortega, Antonio
Format Conference Proceeding
LanguageEnglish
Published IEEE 16.10.2022
Subjects
Online AccessGet full text
ISSN2381-8549
DOI10.1109/ICIP46576.2022.9897653

Cover

Abstract Transform coding to sparsify signal representations remains crucial in an image compression pipeline. While the Karhunen-Loève transform (KLT) computed from an empirical covariance matrix {\mathbf{\bar C}} is theoretically optimal for a stationary process, in practice, collecting sufficient statistics from a non-stationary image to reliably estimate {\mathbf{\bar C}} can be difficult. In this paper, to encode an intra-prediction residual block, we pursue a hybrid model-based / data-driven approach: the first K eigenvectors of a transform matrix are derived from a statistical model, e.g., the asymmetric discrete sine transform (ADST), for stability, while the remaining N −K are computed from {\mathbf{\bar C}} for data adaptivity. The transform computation is posed as a graph learning problem, where we seek a graph Laplacian matrix minimizing a graphical lasso objective inside a convex cone sharing the first K eigenvectors in a Hilbert space of real symmetric matrices. We efficiently solve the problem via augmented Lagrangian relaxation and proximal gradient (PG). Using open-source WebP as a baseline image codec, experimental results show that our hybrid graph transform achieved better coding performance than discrete cosine transform (DCT), ADST and KLT, and better stability than KLT.
AbstractList Transform coding to sparsify signal representations remains crucial in an image compression pipeline. While the Karhunen-Loève transform (KLT) computed from an empirical covariance matrix {\mathbf{\bar C}} is theoretically optimal for a stationary process, in practice, collecting sufficient statistics from a non-stationary image to reliably estimate {\mathbf{\bar C}} can be difficult. In this paper, to encode an intra-prediction residual block, we pursue a hybrid model-based / data-driven approach: the first K eigenvectors of a transform matrix are derived from a statistical model, e.g., the asymmetric discrete sine transform (ADST), for stability, while the remaining N −K are computed from {\mathbf{\bar C}} for data adaptivity. The transform computation is posed as a graph learning problem, where we seek a graph Laplacian matrix minimizing a graphical lasso objective inside a convex cone sharing the first K eigenvectors in a Hilbert space of real symmetric matrices. We efficiently solve the problem via augmented Lagrangian relaxation and proximal gradient (PG). Using open-source WebP as a baseline image codec, experimental results show that our hybrid graph transform achieved better coding performance than discrete cosine transform (DCT), ADST and KLT, and better stability than KLT.
Author Do, Tam Thuc
Bagheri, Saghar
Ortega, Antonio
Cheung, Gene
Author_xml – sequence: 1
  givenname: Saghar
  surname: Bagheri
  fullname: Bagheri, Saghar
  organization: York University,Toronto,Canada
– sequence: 2
  givenname: Tam Thuc
  surname: Do
  fullname: Do, Tam Thuc
  organization: York University,Toronto,Canada
– sequence: 3
  givenname: Gene
  surname: Cheung
  fullname: Cheung, Gene
  organization: York University,Toronto,Canada
– sequence: 4
  givenname: Antonio
  surname: Ortega
  fullname: Ortega, Antonio
  organization: University of Southern California,CA,USA
BookMark eNotj1FLwzAUhaMouE5_gSD5A-2Se9M0fZzd3AoTfZjP46ZJZmVrRzqE_XsL7uUcPg58cBJ21_WdZ-xFikxKUc7qqv5UOi90BgIgK01Z6BxvWCK1zlWpQRS3bAJoZGpGfmDJMPwIAUKinLD5-mJj6_h77_whfaXBOz7jCzpTuojtr-_4KtLpm28jdUPo45GPwesj7T2vetd2-0d2H-gw-KdrT9nX23JbrdPNx6qu5pu0BYHnVKMyYBvXhIAqV0GDd44axNKOE0gFZLSWBoSyDQS06JXQCGSbQIUinLLnf2_rvd-dYnukeNld7-IffZhKiw
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICIP46576.2022.9897653
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 1665496207
9781665496209
EISSN 2381-8549
EndPage 3671
ExternalDocumentID 9897653
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-63482bcdcff3454f62eddac339b6342142a86618204bc2f3b3e40632abcfa74a3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:21:51 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-63482bcdcff3454f62eddac339b6342142a86618204bc2f3b3e40632abcfa74a3
PageCount 5
ParticipantIDs ieee_primary_9897653
PublicationCentury 2000
PublicationDate 2022-Oct.-16
PublicationDateYYYYMMDD 2022-10-16
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-Oct.-16
  day: 16
PublicationDecade 2020
PublicationTitle Proceedings - International Conference on Image Processing
PublicationTitleAbbrev ICIP
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020131
Score 2.2050643
Snippet Transform coding to sparsify signal representations remains crucial in an image compression pipeline. While the Karhunen-Loève transform (KLT) computed from an...
SourceID ieee
SourceType Publisher
StartPage 3667
SubjectTerms Adaptation models
Computational modeling
graph learning
graph transform
Image coding
Stability analysis
Symmetric matrices
Transform coding
Transforms
Title Hybrid Model-Based / Data-Driven Graph Transform for Image Coding
URI https://ieeexplore.ieee.org/document/9897653
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6AkydUMP5ODx7tGGs31qOCCCYYDpBwI31dmxgVDI6D_vW-NwZG48FL1zTp1vR1_V5_fN9j7MpAIgGhXejQxkJpkAJSbYVJvVFeS60McYdHj8lgqh5m8azCrndcGOdccfnMBZQtzvKzpV3TVllLpwiesayyKg6zDVdrt7gi3ZiSAdwOdWvYHY5Vgs40LgGjKChr_gihUiBIv85G229vLo48B-scAvv5S5bxv43bZ81vrh4f71DogFXc4pDVS-eSl7_ue4PdDD6InMUp-NmLuEXwyniL90xuRG9FUx6_J-1qPtl6shwTPnzF-YZ3l_TuJpv27ybdgSjjJ4inKJS5SEi4BmxmvZcqVj6JXJYZK6VGAynSWjMpwjP6AAps5CVIh_AuIwPWm44y8ojVFsuFO2bcoT07DuubDih8AoCXGSiriIrqwhPWoB6Zv20kMuZlZ5z-XXzG9sgqBAHt5JzV8tXaXSC253BZGPUL95Ojug
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PT8IwFMdfEA96QgXjb3vwaAes3ViPCuKmQDhAwo20XZsYFQyOg_71vo6B0Xjwsi1Lui19WT-vW7_fB3AlVcgUop2Khg4oF4pRFQlNZWQlt4IJLp12uD8I4zF_mASTElxvtDDGmHzxmfHcYf4vP53rpftUVhcRwjNgW7CN3OfBSq21mV4555hCA9xsiHrSToY8xHQaJ4G-7xVtfxRRyRnSrUB_fffV0pFnb5kpT3_-Mmb87-PtQe1brUeGGw7tQ8nMDqBSpJekeHnfq3ATfzh5FnHlz17oLeIrJXXSkZmknYUb9Mi9c68mo3UuS3BDklcccUh77q5dg3H3btSOaVFBgT75DZbR0FnXKJ1qaxn2mA19k6ZSMyYwRNy5rckIAY1ZAFfat0wxg4BnvlTayhaX7BDKs_nMHAExGNGWwfaypTjulVKWpYpr7sSopnEMVdcj07eVSca06IyTv09fwk486vemvWTweAq7LkIOCM3wDMrZYmnOkfSZusgD_AW8YKcH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+-+International+Conference+on+Image+Processing&rft.atitle=Hybrid+Model-Based+%2F+Data-Driven+Graph+Transform+for+Image+Coding&rft.au=Bagheri%2C+Saghar&rft.au=Do%2C+Tam+Thuc&rft.au=Cheung%2C+Gene&rft.au=Ortega%2C+Antonio&rft.date=2022-10-16&rft.pub=IEEE&rft.eissn=2381-8549&rft.spage=3667&rft.epage=3671&rft_id=info:doi/10.1109%2FICIP46576.2022.9897653&rft.externalDocID=9897653