Hybrid Model-Based / Data-Driven Graph Transform for Image Coding
Transform coding to sparsify signal representations remains crucial in an image compression pipeline. While the Karhunen-Loève transform (KLT) computed from an empirical covariance matrix {\mathbf{\bar C}} is theoretically optimal for a stationary process, in practice, collecting sufficient statisti...
Saved in:
Published in | Proceedings - International Conference on Image Processing pp. 3667 - 3671 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
16.10.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2381-8549 |
DOI | 10.1109/ICIP46576.2022.9897653 |
Cover
Abstract | Transform coding to sparsify signal representations remains crucial in an image compression pipeline. While the Karhunen-Loève transform (KLT) computed from an empirical covariance matrix {\mathbf{\bar C}} is theoretically optimal for a stationary process, in practice, collecting sufficient statistics from a non-stationary image to reliably estimate {\mathbf{\bar C}} can be difficult. In this paper, to encode an intra-prediction residual block, we pursue a hybrid model-based / data-driven approach: the first K eigenvectors of a transform matrix are derived from a statistical model, e.g., the asymmetric discrete sine transform (ADST), for stability, while the remaining N −K are computed from {\mathbf{\bar C}} for data adaptivity. The transform computation is posed as a graph learning problem, where we seek a graph Laplacian matrix minimizing a graphical lasso objective inside a convex cone sharing the first K eigenvectors in a Hilbert space of real symmetric matrices. We efficiently solve the problem via augmented Lagrangian relaxation and proximal gradient (PG). Using open-source WebP as a baseline image codec, experimental results show that our hybrid graph transform achieved better coding performance than discrete cosine transform (DCT), ADST and KLT, and better stability than KLT. |
---|---|
AbstractList | Transform coding to sparsify signal representations remains crucial in an image compression pipeline. While the Karhunen-Loève transform (KLT) computed from an empirical covariance matrix {\mathbf{\bar C}} is theoretically optimal for a stationary process, in practice, collecting sufficient statistics from a non-stationary image to reliably estimate {\mathbf{\bar C}} can be difficult. In this paper, to encode an intra-prediction residual block, we pursue a hybrid model-based / data-driven approach: the first K eigenvectors of a transform matrix are derived from a statistical model, e.g., the asymmetric discrete sine transform (ADST), for stability, while the remaining N −K are computed from {\mathbf{\bar C}} for data adaptivity. The transform computation is posed as a graph learning problem, where we seek a graph Laplacian matrix minimizing a graphical lasso objective inside a convex cone sharing the first K eigenvectors in a Hilbert space of real symmetric matrices. We efficiently solve the problem via augmented Lagrangian relaxation and proximal gradient (PG). Using open-source WebP as a baseline image codec, experimental results show that our hybrid graph transform achieved better coding performance than discrete cosine transform (DCT), ADST and KLT, and better stability than KLT. |
Author | Do, Tam Thuc Bagheri, Saghar Ortega, Antonio Cheung, Gene |
Author_xml | – sequence: 1 givenname: Saghar surname: Bagheri fullname: Bagheri, Saghar organization: York University,Toronto,Canada – sequence: 2 givenname: Tam Thuc surname: Do fullname: Do, Tam Thuc organization: York University,Toronto,Canada – sequence: 3 givenname: Gene surname: Cheung fullname: Cheung, Gene organization: York University,Toronto,Canada – sequence: 4 givenname: Antonio surname: Ortega fullname: Ortega, Antonio organization: University of Southern California,CA,USA |
BookMark | eNotj1FLwzAUhaMouE5_gSD5A-2Se9M0fZzd3AoTfZjP46ZJZmVrRzqE_XsL7uUcPg58cBJ21_WdZ-xFikxKUc7qqv5UOi90BgIgK01Z6BxvWCK1zlWpQRS3bAJoZGpGfmDJMPwIAUKinLD5-mJj6_h77_whfaXBOz7jCzpTuojtr-_4KtLpm28jdUPo45GPwesj7T2vetd2-0d2H-gw-KdrT9nX23JbrdPNx6qu5pu0BYHnVKMyYBvXhIAqV0GDd44axNKOE0gFZLSWBoSyDQS06JXQCGSbQIUinLLnf2_rvd-dYnukeNld7-IffZhKiw |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICIP46576.2022.9897653 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 1665496207 9781665496209 |
EISSN | 2381-8549 |
EndPage | 3671 |
ExternalDocumentID | 9897653 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i203t-63482bcdcff3454f62eddac339b6342142a86618204bc2f3b3e40632abcfa74a3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:21:51 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-63482bcdcff3454f62eddac339b6342142a86618204bc2f3b3e40632abcfa74a3 |
PageCount | 5 |
ParticipantIDs | ieee_primary_9897653 |
PublicationCentury | 2000 |
PublicationDate | 2022-Oct.-16 |
PublicationDateYYYYMMDD | 2022-10-16 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-Oct.-16 day: 16 |
PublicationDecade | 2020 |
PublicationTitle | Proceedings - International Conference on Image Processing |
PublicationTitleAbbrev | ICIP |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0020131 |
Score | 2.2050643 |
Snippet | Transform coding to sparsify signal representations remains crucial in an image compression pipeline. While the Karhunen-Loève transform (KLT) computed from an... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 3667 |
SubjectTerms | Adaptation models Computational modeling graph learning graph transform Image coding Stability analysis Symmetric matrices Transform coding Transforms |
Title | Hybrid Model-Based / Data-Driven Graph Transform for Image Coding |
URI | https://ieeexplore.ieee.org/document/9897653 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6AkydUMP5ODx7tGGs31qOCCCYYDpBwI31dmxgVDI6D_vW-NwZG48FL1zTp1vR1_V5_fN9j7MpAIgGhXejQxkJpkAJSbYVJvVFeS60McYdHj8lgqh5m8azCrndcGOdccfnMBZQtzvKzpV3TVllLpwiesayyKg6zDVdrt7gi3ZiSAdwOdWvYHY5Vgs40LgGjKChr_gihUiBIv85G229vLo48B-scAvv5S5bxv43bZ81vrh4f71DogFXc4pDVS-eSl7_ue4PdDD6InMUp-NmLuEXwyniL90xuRG9FUx6_J-1qPtl6shwTPnzF-YZ3l_TuJpv27ybdgSjjJ4inKJS5SEi4BmxmvZcqVj6JXJYZK6VGAynSWjMpwjP6AAps5CVIh_AuIwPWm44y8ojVFsuFO2bcoT07DuubDih8AoCXGSiriIrqwhPWoB6Zv20kMuZlZ5z-XXzG9sgqBAHt5JzV8tXaXSC253BZGPUL95Ojug |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PT8IwFMdfEA96QgXjb3vwaAes3ViPCuKmQDhAwo20XZsYFQyOg_71vo6B0Xjwsi1Lui19WT-vW7_fB3AlVcgUop2Khg4oF4pRFQlNZWQlt4IJLp12uD8I4zF_mASTElxvtDDGmHzxmfHcYf4vP53rpftUVhcRwjNgW7CN3OfBSq21mV4555hCA9xsiHrSToY8xHQaJ4G-7xVtfxRRyRnSrUB_fffV0pFnb5kpT3_-Mmb87-PtQe1brUeGGw7tQ8nMDqBSpJekeHnfq3ATfzh5FnHlz17oLeIrJXXSkZmknYUb9Mi9c68mo3UuS3BDklcccUh77q5dg3H3btSOaVFBgT75DZbR0FnXKJ1qaxn2mA19k6ZSMyYwRNy5rckIAY1ZAFfat0wxg4BnvlTayhaX7BDKs_nMHAExGNGWwfaypTjulVKWpYpr7sSopnEMVdcj07eVSca06IyTv09fwk486vemvWTweAq7LkIOCM3wDMrZYmnOkfSZusgD_AW8YKcH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+-+International+Conference+on+Image+Processing&rft.atitle=Hybrid+Model-Based+%2F+Data-Driven+Graph+Transform+for+Image+Coding&rft.au=Bagheri%2C+Saghar&rft.au=Do%2C+Tam+Thuc&rft.au=Cheung%2C+Gene&rft.au=Ortega%2C+Antonio&rft.date=2022-10-16&rft.pub=IEEE&rft.eissn=2381-8549&rft.spage=3667&rft.epage=3671&rft_id=info:doi/10.1109%2FICIP46576.2022.9897653&rft.externalDocID=9897653 |