FSGAN: Subject Agnostic Face Swapping and Reenactment
We present Face Swapping GAN (FSGAN) for face swapping and reenactment. Unlike previous work, FSGAN is subject agnostic and can be applied to pairs of faces without requiring training on those faces. To this end, we describe a number of technical contributions. We derive a novel recurrent neural net...
Saved in:
Published in | Proceedings / IEEE International Conference on Computer Vision pp. 7183 - 7192 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We present Face Swapping GAN (FSGAN) for face swapping and reenactment. Unlike previous work, FSGAN is subject agnostic and can be applied to pairs of faces without requiring training on those faces. To this end, we describe a number of technical contributions. We derive a novel recurrent neural network (RNN)-based approach for face reenactment which adjusts for both pose and expression variations and can be applied to a single image or a video sequence. For video sequences, we introduce continuous interpolation of the face views based on reenactment, Delaunay Triangulation, and barycentric coordinates. Occluded face regions are handled by a face completion network. Finally, we use a face blending network for seamless blending of the two faces while preserving target skin color and lighting conditions. This network uses a novel Poisson blending loss which combines Poisson optimization with perceptual loss. We compare our approach to existing state-of-the-art systems and show our results to be both qualitatively and quantitatively superior. |
---|---|
AbstractList | We present Face Swapping GAN (FSGAN) for face swapping and reenactment. Unlike previous work, FSGAN is subject agnostic and can be applied to pairs of faces without requiring training on those faces. To this end, we describe a number of technical contributions. We derive a novel recurrent neural network (RNN)-based approach for face reenactment which adjusts for both pose and expression variations and can be applied to a single image or a video sequence. For video sequences, we introduce continuous interpolation of the face views based on reenactment, Delaunay Triangulation, and barycentric coordinates. Occluded face regions are handled by a face completion network. Finally, we use a face blending network for seamless blending of the two faces while preserving target skin color and lighting conditions. This network uses a novel Poisson blending loss which combines Poisson optimization with perceptual loss. We compare our approach to existing state-of-the-art systems and show our results to be both qualitatively and quantitatively superior. |
Author | Keller, Yosi Hassner, Tal Nirkin, Yuval |
Author_xml | – sequence: 1 givenname: Yuval surname: Nirkin fullname: Nirkin, Yuval organization: Bar-Ilan University – sequence: 2 givenname: Yosi surname: Keller fullname: Keller, Yosi organization: Bar Ilan University – sequence: 3 givenname: Tal surname: Hassner fullname: Hassner, Tal organization: Open University of Israel |
BookMark | eNotjsFKw0AUAFdRsK09e_CyP5D4dt9m89ZbCKYWioJRr2W7eSkpdhuaiPj3Lehp5jTMVFzFQ2Qh7hSkSoF7WJblZ6pBuRQg13Qh5i4ndTZlCJAuxUQjQZJnYG7EdBh2AOg02YnIqnpRvDzK-nuz4zDKYhsPw9gFWfnAsv7xfd_FrfSxkW_M0Ydxz3G8Fdet_xp4_s-Z-Kie3svnZPW6WJbFKuk04JhYjeeH1uWQN6YhE0jZzGaOfBNAAyEa32oKVumm0bwBhAAqY8QWFFmLM3H_1-2Yed0fu70__q4dKECj8ARlIUQm |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICCV.2019.00728 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9781728148038 1728148030 |
EISSN | 2380-7504 |
EndPage | 7192 |
ExternalDocumentID | 9010341 |
Genre | orig-research |
GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i203t-623728f9707d4d84c81656598adc0208334af28c612dd2eb030c015e33f018663 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:38:47 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-623728f9707d4d84c81656598adc0208334af28c612dd2eb030c015e33f018663 |
PageCount | 10 |
ParticipantIDs | ieee_primary_9010341 |
PublicationCentury | 2000 |
PublicationDate | 2019-Oct. |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-Oct. |
PublicationDecade | 2010 |
PublicationTitle | Proceedings / IEEE International Conference on Computer Vision |
PublicationTitleAbbrev | ICCV |
PublicationYear | 2019 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0039286 |
Score | 2.6170168 |
Snippet | We present Face Swapping GAN (FSGAN) for face swapping and reenactment. Unlike previous work, FSGAN is subject agnostic and can be applied to pairs of faces... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 7183 |
SubjectTerms | Face Gallium nitride Generators Hair Image segmentation Three-dimensional displays Training |
Title | FSGAN: Subject Agnostic Face Swapping and Reenactment |
URI | https://ieeexplore.ieee.org/document/9010341 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zJ09TN_E3OXi0W7okbeptDOsUNsQ52W00yYuI0Il2CP715rXdRPHgLeSQn02-99LvfY-Q89hpp3QEQcw0C0RoTZCBEgH0HQ-NizysoKM4nkSjmbidy3mDXGxiYQCgJJ9BF4vlv3y7NCt8KushlYBjlPqWd9yqWK31rethXkW1dE_Ikt7NcPiIxK2k1MZWP3KnlNCRtsh43WnFGHnprgrdNZ-_9Bj_O6od0vkO0qN3G_jZJQ3I90irtippfWbf20Sm0-vB5JL6KwLfXOgAqXX-c6Fp5luYfmSo0PBEs9zSe-_UZqbknXfILL16GI6COllC8NxnvAi8GePn6ZKYxVZYJYxCXR2ZqMwaTMTJuchcXxlv0VjbB-0Pt_GmAHDuGIre8X3SzJc5HBAaomSONNI6BcIlUodglLaMATApuTgkbVyFxWulh7GoF-Do7-pjso37UBHgTkizeFvBqQfyQp-VO_gFAuabpw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG4IHvTkBxi_7cGjg25tt84bIU5QIEbAcCNr-9YYk2F0xMRfb7sNjMaDt6aHfrfP2_Z5nxehi8hII2QIXkQk8ZivlZeCYB4EhvrKhBZW3EVxOAp7U3Y747Maulz7wgBAQT6DlksWf_l6oZbuqaztqATUealvWNznfumttTp3LdCLsBLv8Unc7ne7j466FRfq2OJH9JQCPJJtNFxVW3JGXlrLXLbU5y9Fxv-2awc1v9308P0agHZRDbI9tF3Zlbjate8NxJPxTWd0he0h4V5dcMeR6-yCwUlqSxh_pE6j4QmnmcYP9lqbqoJ53kTT5HrS7XlVuATvOSA096whY_tp4ohEmmnBlHDKOjwWqVYuFCelLDWBUNam0ToAabe3ssYAUGqIk72j-6ieLTI4QNh3ojlccW0EMBNz6YMSUhMCQDin7BA13CjMX0tFjHk1AEd_Z5-jzd5kOJgP-qO7Y7Tl5qSkw52gev62hFML67k8K2bzC1gWnvA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Conference+on+Computer+Vision&rft.atitle=FSGAN%3A+Subject+Agnostic+Face+Swapping+and+Reenactment&rft.au=Nirkin%2C+Yuval&rft.au=Keller%2C+Yosi&rft.au=Hassner%2C+Tal&rft.date=2019-10-01&rft.pub=IEEE&rft.eissn=2380-7504&rft.spage=7183&rft.epage=7192&rft_id=info:doi/10.1109%2FICCV.2019.00728&rft.externalDocID=9010341 |