FSGAN: Subject Agnostic Face Swapping and Reenactment

We present Face Swapping GAN (FSGAN) for face swapping and reenactment. Unlike previous work, FSGAN is subject agnostic and can be applied to pairs of faces without requiring training on those faces. To this end, we describe a number of technical contributions. We derive a novel recurrent neural net...

Full description

Saved in:
Bibliographic Details
Published inProceedings / IEEE International Conference on Computer Vision pp. 7183 - 7192
Main Authors Nirkin, Yuval, Keller, Yosi, Hassner, Tal
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present Face Swapping GAN (FSGAN) for face swapping and reenactment. Unlike previous work, FSGAN is subject agnostic and can be applied to pairs of faces without requiring training on those faces. To this end, we describe a number of technical contributions. We derive a novel recurrent neural network (RNN)-based approach for face reenactment which adjusts for both pose and expression variations and can be applied to a single image or a video sequence. For video sequences, we introduce continuous interpolation of the face views based on reenactment, Delaunay Triangulation, and barycentric coordinates. Occluded face regions are handled by a face completion network. Finally, we use a face blending network for seamless blending of the two faces while preserving target skin color and lighting conditions. This network uses a novel Poisson blending loss which combines Poisson optimization with perceptual loss. We compare our approach to existing state-of-the-art systems and show our results to be both qualitatively and quantitatively superior.
AbstractList We present Face Swapping GAN (FSGAN) for face swapping and reenactment. Unlike previous work, FSGAN is subject agnostic and can be applied to pairs of faces without requiring training on those faces. To this end, we describe a number of technical contributions. We derive a novel recurrent neural network (RNN)-based approach for face reenactment which adjusts for both pose and expression variations and can be applied to a single image or a video sequence. For video sequences, we introduce continuous interpolation of the face views based on reenactment, Delaunay Triangulation, and barycentric coordinates. Occluded face regions are handled by a face completion network. Finally, we use a face blending network for seamless blending of the two faces while preserving target skin color and lighting conditions. This network uses a novel Poisson blending loss which combines Poisson optimization with perceptual loss. We compare our approach to existing state-of-the-art systems and show our results to be both qualitatively and quantitatively superior.
Author Keller, Yosi
Hassner, Tal
Nirkin, Yuval
Author_xml – sequence: 1
  givenname: Yuval
  surname: Nirkin
  fullname: Nirkin, Yuval
  organization: Bar-Ilan University
– sequence: 2
  givenname: Yosi
  surname: Keller
  fullname: Keller, Yosi
  organization: Bar Ilan University
– sequence: 3
  givenname: Tal
  surname: Hassner
  fullname: Hassner, Tal
  organization: Open University of Israel
BookMark eNotjsFKw0AUAFdRsK09e_CyP5D4dt9m89ZbCKYWioJRr2W7eSkpdhuaiPj3Lehp5jTMVFzFQ2Qh7hSkSoF7WJblZ6pBuRQg13Qh5i4ndTZlCJAuxUQjQZJnYG7EdBh2AOg02YnIqnpRvDzK-nuz4zDKYhsPw9gFWfnAsv7xfd_FrfSxkW_M0Ydxz3G8Fdet_xp4_s-Z-Kie3svnZPW6WJbFKuk04JhYjeeH1uWQN6YhE0jZzGaOfBNAAyEa32oKVumm0bwBhAAqY8QWFFmLM3H_1-2Yed0fu70__q4dKECj8ARlIUQm
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICCV.2019.00728
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781728148038
1728148030
EISSN 2380-7504
EndPage 7192
ExternalDocumentID 9010341
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-623728f9707d4d84c81656598adc0208334af28c612dd2eb030c015e33f018663
IEDL.DBID RIE
IngestDate Wed Aug 27 02:38:47 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-623728f9707d4d84c81656598adc0208334af28c612dd2eb030c015e33f018663
PageCount 10
ParticipantIDs ieee_primary_9010341
PublicationCentury 2000
PublicationDate 2019-Oct.
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-Oct.
PublicationDecade 2010
PublicationTitle Proceedings / IEEE International Conference on Computer Vision
PublicationTitleAbbrev ICCV
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0039286
Score 2.6170168
Snippet We present Face Swapping GAN (FSGAN) for face swapping and reenactment. Unlike previous work, FSGAN is subject agnostic and can be applied to pairs of faces...
SourceID ieee
SourceType Publisher
StartPage 7183
SubjectTerms Face
Gallium nitride
Generators
Hair
Image segmentation
Three-dimensional displays
Training
Title FSGAN: Subject Agnostic Face Swapping and Reenactment
URI https://ieeexplore.ieee.org/document/9010341
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zJ09TN_E3OXi0W7okbeptDOsUNsQ52W00yYuI0Il2CP715rXdRPHgLeSQn02-99LvfY-Q89hpp3QEQcw0C0RoTZCBEgH0HQ-NizysoKM4nkSjmbidy3mDXGxiYQCgJJ9BF4vlv3y7NCt8KushlYBjlPqWd9yqWK31rethXkW1dE_Ikt7NcPiIxK2k1MZWP3KnlNCRtsh43WnFGHnprgrdNZ-_9Bj_O6od0vkO0qN3G_jZJQ3I90irtippfWbf20Sm0-vB5JL6KwLfXOgAqXX-c6Fp5luYfmSo0PBEs9zSe-_UZqbknXfILL16GI6COllC8NxnvAi8GePn6ZKYxVZYJYxCXR2ZqMwaTMTJuchcXxlv0VjbB-0Pt_GmAHDuGIre8X3SzJc5HBAaomSONNI6BcIlUodglLaMATApuTgkbVyFxWulh7GoF-Do7-pjso37UBHgTkizeFvBqQfyQp-VO_gFAuabpw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG4IHvTkBxi_7cGjg25tt84bIU5QIEbAcCNr-9YYk2F0xMRfb7sNjMaDt6aHfrfP2_Z5nxehi8hII2QIXkQk8ZivlZeCYB4EhvrKhBZW3EVxOAp7U3Y747Maulz7wgBAQT6DlksWf_l6oZbuqaztqATUealvWNznfumttTp3LdCLsBLv8Unc7ne7j466FRfq2OJH9JQCPJJtNFxVW3JGXlrLXLbU5y9Fxv-2awc1v9308P0agHZRDbI9tF3Zlbjate8NxJPxTWd0he0h4V5dcMeR6-yCwUlqSxh_pE6j4QmnmcYP9lqbqoJ53kTT5HrS7XlVuATvOSA096whY_tp4ohEmmnBlHDKOjwWqVYuFCelLDWBUNam0ToAabe3ssYAUGqIk72j-6ieLTI4QNh3ojlccW0EMBNz6YMSUhMCQDin7BA13CjMX0tFjHk1AEd_Z5-jzd5kOJgP-qO7Y7Tl5qSkw52gev62hFML67k8K2bzC1gWnvA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Conference+on+Computer+Vision&rft.atitle=FSGAN%3A+Subject+Agnostic+Face+Swapping+and+Reenactment&rft.au=Nirkin%2C+Yuval&rft.au=Keller%2C+Yosi&rft.au=Hassner%2C+Tal&rft.date=2019-10-01&rft.pub=IEEE&rft.eissn=2380-7504&rft.spage=7183&rft.epage=7192&rft_id=info:doi/10.1109%2FICCV.2019.00728&rft.externalDocID=9010341