An Accurate and Efficient Zero-Crossing Line Classifier for Multiscale Parameter Estimation of Gaussian Signals Subject to Noise
The multiscale parameter estimation framework is a method for estimating the true parameters of signals subject to noise. The method is based on detecting lines of zero-crossings within the Continuous Wavelet Transform and substituting their locations in time into analytical equations directly expre...
Saved in:
Published in | 2021 12th International Symposium on Image and Signal Processing and Analysis (ISPA) pp. 36 - 40 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
13.09.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1849-2266 |
DOI | 10.1109/ISPA52656.2021.9552119 |
Cover
Abstract | The multiscale parameter estimation framework is a method for estimating the true parameters of signals subject to noise. The method is based on detecting lines of zero-crossings within the Continuous Wavelet Transform and substituting their locations in time into analytical equations directly expressing the unknown signal parameters. Evidently, this approach depends on selecting the correct lines, corresponding to the signal of interest and not to other phenomena related to noise. This task can be posed as the binary classification problem of determining for each zero-crossing line found whether or not it should be used for parameter estimation. It has been shown that even for very high noise levels, a correct classification leads to very accurate estimates, while a wrong classification results in highly inaccurate estimates. Therefore, with this particular approach the classification of zero-crossing lines poses the limiting factor to the accuracy of the estimated parameters. In this work, we propose a novel, efficient and more robust classifier called "stencil operator" which accurately detects the best combination of zero-crossing lines of Gaussian input signals. We evaluate the performance of this new classifier using synthetic Gaussian signals subject to white (Gaussian) noise with signal-to-noise ratios ranging from 50 dB to - 20 dB. By studying the error between estimated and ground truth parameters, we show that the new classifier outperforms the current method for all noise levels considered and for a noise level of e.g. -12 dB improves the median error from 132% to 28%. The proposed classifier pushes the boundary for analyzing heavily disturbed signals using multiscale parameter estimation to a new level. |
---|---|
AbstractList | The multiscale parameter estimation framework is a method for estimating the true parameters of signals subject to noise. The method is based on detecting lines of zero-crossings within the Continuous Wavelet Transform and substituting their locations in time into analytical equations directly expressing the unknown signal parameters. Evidently, this approach depends on selecting the correct lines, corresponding to the signal of interest and not to other phenomena related to noise. This task can be posed as the binary classification problem of determining for each zero-crossing line found whether or not it should be used for parameter estimation. It has been shown that even for very high noise levels, a correct classification leads to very accurate estimates, while a wrong classification results in highly inaccurate estimates. Therefore, with this particular approach the classification of zero-crossing lines poses the limiting factor to the accuracy of the estimated parameters. In this work, we propose a novel, efficient and more robust classifier called "stencil operator" which accurately detects the best combination of zero-crossing lines of Gaussian input signals. We evaluate the performance of this new classifier using synthetic Gaussian signals subject to white (Gaussian) noise with signal-to-noise ratios ranging from 50 dB to - 20 dB. By studying the error between estimated and ground truth parameters, we show that the new classifier outperforms the current method for all noise levels considered and for a noise level of e.g. -12 dB improves the median error from 132% to 28%. The proposed classifier pushes the boundary for analyzing heavily disturbed signals using multiscale parameter estimation to a new level. |
Author | Leeker, Robin Spicher, Nicolai Kukuk, Markus |
Author_xml | – sequence: 1 givenname: Robin surname: Leeker fullname: Leeker, Robin email: robin.leeker001@stud.fb-dortmund.de organization: University of Applied Sciences and Arts Dortmund,Department of Computer Science,Dortmund,Germany – sequence: 2 givenname: Nicolai surname: Spicher fullname: Spicher, Nicolai email: nicolai.spicher@plri.de organization: Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School,Braunschweig,Germany – sequence: 3 givenname: Markus surname: Kukuk fullname: Kukuk, Markus email: markus.kukuk@fb-dortmund.de organization: University of Applied Sciences and Arts Dortmund,Department of Computer Science,Dortmund,Germany |
BookMark | eNotUMFKAzEUjKJgrf0CQfIDW_clm-zmuCy1FqoWqhcvJZt9KZFtItnswZuf7oI9DfOGGebNLbnywSMhD5AvAXL1uNnvasGkkEuWM1gqIRiAuiALVVYgpSiY5Kq6JDOoCpUxJuUNWQyDa_OiEnlRqmpGfmtPa2PGqBNS7Tu6stYZhz7RT4wha2KYHP5It84jbXo9MeswUhsifRn75Aaje6Q7HfUJ0ySshuROOrngabB0rcfJoT3du6PX_UD3Y_uFJtEU6GtwA96RazvdcXHGOfl4Wr03z9n2bb1p6m3mWM5TJqfXtAK01pQcNFjbgWEcKsOQcQOqFEXbcjAadVdI6CQzuWllwTqhWSv5nNz_5zpEPHzHqWP8OZw343_2xmSu |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ISPA52656.2021.9552119 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781665426398 166542639X |
EISSN | 1849-2266 |
EndPage | 40 |
ExternalDocumentID | 9552119 |
Genre | orig-research |
GroupedDBID | 6IE 6IL ABLEC ALMA_UNASSIGNED_HOLDINGS CBEJK IEGSK RIE RIL |
ID | FETCH-LOGICAL-i203t-6211a91effc731a1ffd1c2318c2e23c19754bb31caead461d62c0cb642d5a2b63 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:29:19 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-6211a91effc731a1ffd1c2318c2e23c19754bb31caead461d62c0cb642d5a2b63 |
PageCount | 5 |
ParticipantIDs | ieee_primary_9552119 |
PublicationCentury | 2000 |
PublicationDate | 2021-Sept.-13 |
PublicationDateYYYYMMDD | 2021-09-13 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-Sept.-13 day: 13 |
PublicationDecade | 2020 |
PublicationTitle | 2021 12th International Symposium on Image and Signal Processing and Analysis (ISPA) |
PublicationTitleAbbrev | ISPA |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssib048504798 ssib042470063 |
Score | 1.7717483 |
Snippet | The multiscale parameter estimation framework is a method for estimating the true parameters of signals subject to noise. The method is based on detecting... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 36 |
SubjectTerms | Continuous Wavelet Transform Continuous wavelet transforms Distance measurement Gaussian functions Gaussian noise Limiting Parameter estimation Signal-to-noise ratio Task analysis Time-Scale analysis Wavelet analysis Zero-crossings |
Title | An Accurate and Efficient Zero-Crossing Line Classifier for Multiscale Parameter Estimation of Gaussian Signals Subject to Noise |
URI | https://ieeexplore.ieee.org/document/9552119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF7anjypWPHNHDyamk2ym-RYSmsVWgq1IF5kX5EiJNImF0_-dGfStKJ48JaEZRh2hpnZzXzfMHZNNTPWqdYTyve9SAXW0z63XipUqoUjijFCI0-mcryIHp7EU4vd7LAwzrm6-cz16LH-l28LU9FV2W0qBBGStVkb3WyD1dr6ThREMaXb3XsiiDw9aUDB3E9v7-ezPpHBU2NCwHuNsB9TVeqkMtpnk606m16St15V6p75-MXU-F99D1j3G74Hs11iOmQtlx-xz34OfWMqooYAlVsY1uQRKACe3arwBpQucTng6dRBPStzmWHOBKxqoYbprtGcKFhROxdaA4YYHTbARygyuFPVmgCZMF--EiczYEiiOx4oC5gWy7XrssVo-DgYe834BW8Z-GHpSdRdpdxlmYlDrniWWW6wHExM4ILQ8DQWkdYhNwq9MZLcysD4RuOBxgoVaBkes05e5O6EQZJIaUUSJzJNowxjhtNxJI2LpULPUPqUHdHuvbxvGDZemo07-_vzOdsjC1LXBg8vWKdcVe4SS4NSX9U-8QWvE7it |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF58HPSkouLbOXg0NZvsbpJjkWqrtggqiJeyr0gREmmTiyd_ujPpQxQP3pKwDMPOMDO7me8bxs6oZsY61QVSh2EgdOQCE3IXZFJnRnqiGCM0cn-guk_i5lk-L7HzBRbGe980n_kWPTb_8l1pa7oqu8ikJEKyZbaKeV_IKVpr7j0iEgkl3MV7Kok-PZ3BgnmYXfQe7ttEB0-tCRFvzcT9mKvSpJWrDdafKzTtJnlr1ZVp2Y9fXI3_1XiT7XwD-OB-kZq22JIvttlnu4C2tTWRQ4AuHHQa-ggUAC9-XAaXlDBxOeD51EMzLXOUY9YErGuhAepO0KAoWFNDF9oDOhgfptBHKHO41vWEIJnwMHolVmbAoES3PFCVMChHE7_Dnq46j5fdYDaAIRhFYVwFCnXXGfd5bpOYa57njlssCFMb-Si2PEukMCbmVqM_CsWdimxoDR5pnNSRUfEuWynKwu8xSFOlnEyTVGWZyDFqeJMIZX2iNPqGNvtsm3Zv-D7l2BjONu7g78-nbK372L8b3vUGt4dsnaxJPRw8PmIr1bj2x1goVOak8Y8vhi67-g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+12th+International+Symposium+on+Image+and+Signal+Processing+and+Analysis+%28ISPA%29&rft.atitle=An+Accurate+and+Efficient+Zero-Crossing+Line+Classifier+for+Multiscale+Parameter+Estimation+of+Gaussian+Signals+Subject+to+Noise&rft.au=Leeker%2C+Robin&rft.au=Spicher%2C+Nicolai&rft.au=Kukuk%2C+Markus&rft.date=2021-09-13&rft.pub=IEEE&rft.eissn=1849-2266&rft.spage=36&rft.epage=40&rft_id=info:doi/10.1109%2FISPA52656.2021.9552119&rft.externalDocID=9552119 |