An Accurate and Efficient Zero-Crossing Line Classifier for Multiscale Parameter Estimation of Gaussian Signals Subject to Noise

The multiscale parameter estimation framework is a method for estimating the true parameters of signals subject to noise. The method is based on detecting lines of zero-crossings within the Continuous Wavelet Transform and substituting their locations in time into analytical equations directly expre...

Full description

Saved in:
Bibliographic Details
Published in2021 12th International Symposium on Image and Signal Processing and Analysis (ISPA) pp. 36 - 40
Main Authors Leeker, Robin, Spicher, Nicolai, Kukuk, Markus
Format Conference Proceeding
LanguageEnglish
Published IEEE 13.09.2021
Subjects
Online AccessGet full text
ISSN1849-2266
DOI10.1109/ISPA52656.2021.9552119

Cover

Abstract The multiscale parameter estimation framework is a method for estimating the true parameters of signals subject to noise. The method is based on detecting lines of zero-crossings within the Continuous Wavelet Transform and substituting their locations in time into analytical equations directly expressing the unknown signal parameters. Evidently, this approach depends on selecting the correct lines, corresponding to the signal of interest and not to other phenomena related to noise. This task can be posed as the binary classification problem of determining for each zero-crossing line found whether or not it should be used for parameter estimation. It has been shown that even for very high noise levels, a correct classification leads to very accurate estimates, while a wrong classification results in highly inaccurate estimates. Therefore, with this particular approach the classification of zero-crossing lines poses the limiting factor to the accuracy of the estimated parameters. In this work, we propose a novel, efficient and more robust classifier called "stencil operator" which accurately detects the best combination of zero-crossing lines of Gaussian input signals. We evaluate the performance of this new classifier using synthetic Gaussian signals subject to white (Gaussian) noise with signal-to-noise ratios ranging from 50 dB to - 20 dB. By studying the error between estimated and ground truth parameters, we show that the new classifier outperforms the current method for all noise levels considered and for a noise level of e.g. -12 dB improves the median error from 132% to 28%. The proposed classifier pushes the boundary for analyzing heavily disturbed signals using multiscale parameter estimation to a new level.
AbstractList The multiscale parameter estimation framework is a method for estimating the true parameters of signals subject to noise. The method is based on detecting lines of zero-crossings within the Continuous Wavelet Transform and substituting their locations in time into analytical equations directly expressing the unknown signal parameters. Evidently, this approach depends on selecting the correct lines, corresponding to the signal of interest and not to other phenomena related to noise. This task can be posed as the binary classification problem of determining for each zero-crossing line found whether or not it should be used for parameter estimation. It has been shown that even for very high noise levels, a correct classification leads to very accurate estimates, while a wrong classification results in highly inaccurate estimates. Therefore, with this particular approach the classification of zero-crossing lines poses the limiting factor to the accuracy of the estimated parameters. In this work, we propose a novel, efficient and more robust classifier called "stencil operator" which accurately detects the best combination of zero-crossing lines of Gaussian input signals. We evaluate the performance of this new classifier using synthetic Gaussian signals subject to white (Gaussian) noise with signal-to-noise ratios ranging from 50 dB to - 20 dB. By studying the error between estimated and ground truth parameters, we show that the new classifier outperforms the current method for all noise levels considered and for a noise level of e.g. -12 dB improves the median error from 132% to 28%. The proposed classifier pushes the boundary for analyzing heavily disturbed signals using multiscale parameter estimation to a new level.
Author Leeker, Robin
Spicher, Nicolai
Kukuk, Markus
Author_xml – sequence: 1
  givenname: Robin
  surname: Leeker
  fullname: Leeker, Robin
  email: robin.leeker001@stud.fb-dortmund.de
  organization: University of Applied Sciences and Arts Dortmund,Department of Computer Science,Dortmund,Germany
– sequence: 2
  givenname: Nicolai
  surname: Spicher
  fullname: Spicher, Nicolai
  email: nicolai.spicher@plri.de
  organization: Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School,Braunschweig,Germany
– sequence: 3
  givenname: Markus
  surname: Kukuk
  fullname: Kukuk, Markus
  email: markus.kukuk@fb-dortmund.de
  organization: University of Applied Sciences and Arts Dortmund,Department of Computer Science,Dortmund,Germany
BookMark eNotUMFKAzEUjKJgrf0CQfIDW_clm-zmuCy1FqoWqhcvJZt9KZFtItnswZuf7oI9DfOGGebNLbnywSMhD5AvAXL1uNnvasGkkEuWM1gqIRiAuiALVVYgpSiY5Kq6JDOoCpUxJuUNWQyDa_OiEnlRqmpGfmtPa2PGqBNS7Tu6stYZhz7RT4wha2KYHP5It84jbXo9MeswUhsifRn75Aaje6Q7HfUJ0ySshuROOrngabB0rcfJoT3du6PX_UD3Y_uFJtEU6GtwA96RazvdcXHGOfl4Wr03z9n2bb1p6m3mWM5TJqfXtAK01pQcNFjbgWEcKsOQcQOqFEXbcjAadVdI6CQzuWllwTqhWSv5nNz_5zpEPHzHqWP8OZw343_2xmSu
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISPA52656.2021.9552119
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665426398
166542639X
EISSN 1849-2266
EndPage 40
ExternalDocumentID 9552119
Genre orig-research
GroupedDBID 6IE
6IL
ABLEC
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IEGSK
RIE
RIL
ID FETCH-LOGICAL-i203t-6211a91effc731a1ffd1c2318c2e23c19754bb31caead461d62c0cb642d5a2b63
IEDL.DBID RIE
IngestDate Wed Jun 26 19:29:19 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-6211a91effc731a1ffd1c2318c2e23c19754bb31caead461d62c0cb642d5a2b63
PageCount 5
ParticipantIDs ieee_primary_9552119
PublicationCentury 2000
PublicationDate 2021-Sept.-13
PublicationDateYYYYMMDD 2021-09-13
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-Sept.-13
  day: 13
PublicationDecade 2020
PublicationTitle 2021 12th International Symposium on Image and Signal Processing and Analysis (ISPA)
PublicationTitleAbbrev ISPA
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib048504798
ssib042470063
Score 1.7717483
Snippet The multiscale parameter estimation framework is a method for estimating the true parameters of signals subject to noise. The method is based on detecting...
SourceID ieee
SourceType Publisher
StartPage 36
SubjectTerms Continuous Wavelet Transform
Continuous wavelet transforms
Distance measurement
Gaussian functions
Gaussian noise
Limiting
Parameter estimation
Signal-to-noise ratio
Task analysis
Time-Scale analysis
Wavelet analysis
Zero-crossings
Title An Accurate and Efficient Zero-Crossing Line Classifier for Multiscale Parameter Estimation of Gaussian Signals Subject to Noise
URI https://ieeexplore.ieee.org/document/9552119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF7anjypWPHNHDyamk2ym-RYSmsVWgq1IF5kX5EiJNImF0_-dGfStKJ48JaEZRh2hpnZzXzfMHZNNTPWqdYTyve9SAXW0z63XipUqoUjijFCI0-mcryIHp7EU4vd7LAwzrm6-cz16LH-l28LU9FV2W0qBBGStVkb3WyD1dr6ThREMaXb3XsiiDw9aUDB3E9v7-ezPpHBU2NCwHuNsB9TVeqkMtpnk606m16St15V6p75-MXU-F99D1j3G74Hs11iOmQtlx-xz34OfWMqooYAlVsY1uQRKACe3arwBpQucTng6dRBPStzmWHOBKxqoYbprtGcKFhROxdaA4YYHTbARygyuFPVmgCZMF--EiczYEiiOx4oC5gWy7XrssVo-DgYe834BW8Z-GHpSdRdpdxlmYlDrniWWW6wHExM4ILQ8DQWkdYhNwq9MZLcysD4RuOBxgoVaBkes05e5O6EQZJIaUUSJzJNowxjhtNxJI2LpULPUPqUHdHuvbxvGDZemo07-_vzOdsjC1LXBg8vWKdcVe4SS4NSX9U-8QWvE7it
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF58HPSkouLbOXg0NZvsbpJjkWqrtggqiJeyr0gREmmTiyd_ujPpQxQP3pKwDMPOMDO7me8bxs6oZsY61QVSh2EgdOQCE3IXZFJnRnqiGCM0cn-guk_i5lk-L7HzBRbGe980n_kWPTb_8l1pa7oqu8ikJEKyZbaKeV_IKVpr7j0iEgkl3MV7Kok-PZ3BgnmYXfQe7ttEB0-tCRFvzcT9mKvSpJWrDdafKzTtJnlr1ZVp2Y9fXI3_1XiT7XwD-OB-kZq22JIvttlnu4C2tTWRQ4AuHHQa-ggUAC9-XAaXlDBxOeD51EMzLXOUY9YErGuhAepO0KAoWFNDF9oDOhgfptBHKHO41vWEIJnwMHolVmbAoES3PFCVMChHE7_Dnq46j5fdYDaAIRhFYVwFCnXXGfd5bpOYa57njlssCFMb-Si2PEukMCbmVqM_CsWdimxoDR5pnNSRUfEuWynKwu8xSFOlnEyTVGWZyDFqeJMIZX2iNPqGNvtsm3Zv-D7l2BjONu7g78-nbK372L8b3vUGt4dsnaxJPRw8PmIr1bj2x1goVOak8Y8vhi67-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+12th+International+Symposium+on+Image+and+Signal+Processing+and+Analysis+%28ISPA%29&rft.atitle=An+Accurate+and+Efficient+Zero-Crossing+Line+Classifier+for+Multiscale+Parameter+Estimation+of+Gaussian+Signals+Subject+to+Noise&rft.au=Leeker%2C+Robin&rft.au=Spicher%2C+Nicolai&rft.au=Kukuk%2C+Markus&rft.date=2021-09-13&rft.pub=IEEE&rft.eissn=1849-2266&rft.spage=36&rft.epage=40&rft_id=info:doi/10.1109%2FISPA52656.2021.9552119&rft.externalDocID=9552119