Personalized Image Semantic Segmentation

Semantic segmentation models trained on public datasets have achieved great success in recent years. However, these models didn't consider the personalization issue of segmentation though it is important in practice. In this paper, we address the problem of personalized image segmentation. The...

Full description

Saved in:
Bibliographic Details
Published inProceedings / IEEE International Conference on Computer Vision pp. 10529 - 10539
Main Authors Zhang, Yu, Zhang, Chang-Bin, Jiang, Peng-Tao, Cheng, Ming-Ming, Mao, Feng
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Semantic segmentation models trained on public datasets have achieved great success in recent years. However, these models didn't consider the personalization issue of segmentation though it is important in practice. In this paper, we address the problem of personalized image segmentation. The objective is to generate more accurate segmentation results on unlabeled personalized images by investigating the data's personalized traits. To open up future research in this area, we collect a large dataset containing various users' personalized images called PSS (Personalized Semantic Segmentation). We also survey some recent researches related to this problem and report their performance on our dataset. Furthermore, by observing the correlation among a user's personalized images, we propose a baseline method that incorporates the inter-image context when segmenting certain images. Extensive experiments show that our method outperforms the existing methods on the proposed dataset. The code and the PSS dataset are available at https://mmcheng.net/pss/.
AbstractList Semantic segmentation models trained on public datasets have achieved great success in recent years. However, these models didn't consider the personalization issue of segmentation though it is important in practice. In this paper, we address the problem of personalized image segmentation. The objective is to generate more accurate segmentation results on unlabeled personalized images by investigating the data's personalized traits. To open up future research in this area, we collect a large dataset containing various users' personalized images called PSS (Personalized Semantic Segmentation). We also survey some recent researches related to this problem and report their performance on our dataset. Furthermore, by observing the correlation among a user's personalized images, we propose a baseline method that incorporates the inter-image context when segmenting certain images. Extensive experiments show that our method outperforms the existing methods on the proposed dataset. The code and the PSS dataset are available at https://mmcheng.net/pss/.
Author Zhang, Chang-Bin
Mao, Feng
Jiang, Peng-Tao
Cheng, Ming-Ming
Zhang, Yu
Author_xml – sequence: 1
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
  email: zhangyuygss@gmail.com
  organization: Nankai University,TKLNDST, CS
– sequence: 2
  givenname: Chang-Bin
  surname: Zhang
  fullname: Zhang, Chang-Bin
  organization: Nankai University,TKLNDST, CS
– sequence: 3
  givenname: Peng-Tao
  surname: Jiang
  fullname: Jiang, Peng-Tao
  email: pt.jiang@mail.nankai.edu.cn
  organization: Nankai University,TKLNDST, CS
– sequence: 4
  givenname: Ming-Ming
  surname: Cheng
  fullname: Cheng, Ming-Ming
  email: cmm@nankai.edu.cn
  organization: Nankai University,TKLNDST, CS
– sequence: 5
  givenname: Feng
  surname: Mao
  fullname: Mao, Feng
  organization: Alibaba Group
BookMark eNotjMtKw0AUQEdRsK39Al106Sbx3jvvpQQfgYKCj22ZTG7KSDORJBv9egu6OoezOEtxlofMQlwjlIjgb-uq-lDOE5UEhCUgSHci1t46NEYrckj6VCxIOiisBnUhltP0CSA9ObMQNy88TkMOh_TD7abuw543r9yHPKd4lH3PeQ5zGvKlOO_CYeL1P1fi_eH-rXoqts-PdXW3LRKBnAuDrK0NKhiIkTsrG9eGplWO2UcwIaK00MVjMCytbqJiNEyt4g50IJIrcfX3Tcy8-xpTH8bvnbeIZFH-ArkIQ-Q
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICCV48922.2021.01038
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781665428125
1665428120
EISSN 2380-7504
EndPage 10539
ExternalDocumentID 9711271
Genre orig-research
GrantInformation_xml – fundername: Ministry of Education
  funderid: 10.13039/100010002
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 10.13039/501100012226
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-61e577a4a60ccef73b8dabd48ee9c06ac1370fcd486e375bc4e16e2d4ef05a223
IEDL.DBID RIE
IngestDate Wed Aug 27 02:25:42 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-61e577a4a60ccef73b8dabd48ee9c06ac1370fcd486e375bc4e16e2d4ef05a223
PageCount 11
ParticipantIDs ieee_primary_9711271
PublicationCentury 2000
PublicationDate 2021-Oct.
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-Oct.
PublicationDecade 2020
PublicationTitle Proceedings / IEEE International Conference on Computer Vision
PublicationTitleAbbrev ICCV
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0039286
Score 2.2151558
Snippet Semantic segmentation models trained on public datasets have achieved great success in recent years. However, these models didn't consider the personalization...
SourceID ieee
SourceType Publisher
StartPage 10529
SubjectTerms Codes
Computer vision
Correlation
Datasets and evaluation
grouping and shape
Image segmentation
Segmentation
Semantics
Title Personalized Image Semantic Segmentation
URI https://ieeexplore.ieee.org/document/9711271
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED0VJqYCLeJbGRgYSGo7ju3MFVWLVFQJirpVtnNBFWqKIF3667GTtAjEwGbdYp8t-72z7_kAbpgWibSChBnNTcgZwzCVxoQqyw3VjiGrqmjf-FEMp_xhlsxacLfTwiBilXyGkW9Wb_nZyq79VVkvlY4deMH4ngvcaq3W9tR1MK9EI42jJO2N-v0XrlLmtVaMRr6agfpRQKXCj0Ebxtue67SRt2hdmshufn3K-N-hHUL3W6kXTHYYdAQtLI6h3VDLoNm4nx24nWxJ98bZR0t3igRPuHTTurCu8bpsJEhFF6aD--f-MGyKJIQLRuLShX6YSKm5FsRazGVsVKZNxhViaonQlsaS5NYZBMYyMZYjFcgyjjlJtCMHJ7BfrAo8hcBodAhu3Jqi4JYmxlCDIuaxyjUqK86g4x2fv9f_YMwbn8__Nl_AgZ_6OvHtEvbLjzVeOQAvzXW1cl-n8ZwB
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4QPOgJFYxv9-DBg7u0u922eyYSUCAkguFG2u6sIYbF6HLh19t9gNF48NbMpY9J-31t55sBuPUVD4XhxI1pol3m--hGQmtXxommyjJkWRTtG454b8oeZ-GsBvc7LQwiFsFn6OXN4i8_Xpl1_lTWjoRlB7lgfM_ifkhLtdb23LVAL3kljqMkavc7nRcmIz9XW_nUy-sZyB8lVAoE6TZguO27DBx589aZ9szmV1rG_w7uEFrfWj1nvEOhI6hhegyNilw61db9bMLdeEu7N9beX9pzxHnGpV3YhbGN12UlQkpbMO0-TDo9tyqT4C58EmT28oehEIopTozBRARaxkrHTCJGhnBlaCBIYqyBYyBCbRhSjn7MMCGhsvTgBOrpKsVTcLRCi-HaehU5MzTUmmrkAQtkolAafgbNfOLz9zITxrya8_nf5hvY702Gg_mgP3q6gIPcDWUY3CXUs481Xlk4z_R14cUv_iWfSg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Conference+on+Computer+Vision&rft.atitle=Personalized+Image+Semantic+Segmentation&rft.au=Zhang%2C+Yu&rft.au=Zhang%2C+Chang-Bin&rft.au=Jiang%2C+Peng-Tao&rft.au=Cheng%2C+Ming-Ming&rft.date=2021-10-01&rft.pub=IEEE&rft.eissn=2380-7504&rft.spage=10529&rft.epage=10539&rft_id=info:doi/10.1109%2FICCV48922.2021.01038&rft.externalDocID=9711271