Semi-Supervised Feature Embedding for Data Sanitization in Real-World Events
With the rapid growth of data sharing through social media networks, determining relevant data items concerning a particular subject becomes paramount. We address the issue of establishing which images represent an event of interest through a semi-supervised learning technique. The method learns con...
Saved in:
Published in | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) pp. 2495 - 2499 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
06.06.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2379-190X |
DOI | 10.1109/ICASSP39728.2021.9414461 |
Cover
Loading…
Abstract | With the rapid growth of data sharing through social media networks, determining relevant data items concerning a particular subject becomes paramount. We address the issue of establishing which images represent an event of interest through a semi-supervised learning technique. The method learns consistent and shared features related to an event (from a small set of examples) to propagate them to an unlabeled set. We investigate the behavior of five image feature representations considering low- and high-level features and their combinations. We evaluate the effectiveness of the feature embedding approach on five collected datasets from real-world events. |
---|---|
AbstractList | With the rapid growth of data sharing through social media networks, determining relevant data items concerning a particular subject becomes paramount. We address the issue of establishing which images represent an event of interest through a semi-supervised learning technique. The method learns consistent and shared features related to an event (from a small set of examples) to propagate them to an unlabeled set. We investigate the behavior of five image feature representations considering low- and high-level features and their combinations. We evaluate the effectiveness of the feature embedding approach on five collected datasets from real-world events. |
Author | Rocha, Anderson Nascimento, Jose Lavi, Bahram |
Author_xml | – sequence: 1 givenname: Bahram surname: Lavi fullname: Lavi, Bahram organization: University of Campinas (Unicamp),Institute of Computing,Campinas,São Paulo,Brazil – sequence: 2 givenname: Jose surname: Nascimento fullname: Nascimento, Jose organization: University of Campinas (Unicamp),Institute of Computing,Campinas,São Paulo,Brazil – sequence: 3 givenname: Anderson surname: Rocha fullname: Rocha, Anderson organization: University of Campinas (Unicamp),Institute of Computing,Campinas,São Paulo,Brazil |
BookMark | eNotj9FKwzAUhqMouM09gTd5gdacJG2SS5mbCgXFKno3TptTibTpaLuBPr0Dd_XDd_Hx_XN2EftIjHEQKYBwt0-ru7J8Uc5Im0ohIXUatM7hjC2dsXDEYHKRZedsJpVxCTjxecXm4_gthLBG2xkrSupCUu53NBzCSJ5vCKf9QHzdVeR9iF-86Qd-jxPyEmOYwi9OoY88RP5K2CYf_dB6vj5QnMZrdtlgO9LytAv2vlm_rR6T4vnh2FokQQo1JVljFeU-q10ulXBOa21lVaNHbFSGuqp93liUhkApV1mBphZWQmNzkJkFtWA3_95ARNvdEDocfran8-oPrpVQpA |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICASSP39728.2021.9414461 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9781728176055 1728176050 |
EISSN | 2379-190X |
EndPage | 2499 |
ExternalDocumentID | 9414461 |
Genre | orig-research |
GroupedDBID | 23M 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i203t-5f83e6d5c962309944482bcadaaf35a4bcd6f8a27e1339b80a7c0821f86125813 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:39:01 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-5f83e6d5c962309944482bcadaaf35a4bcd6f8a27e1339b80a7c0821f86125813 |
PageCount | 5 |
ParticipantIDs | ieee_primary_9414461 |
PublicationCentury | 2000 |
PublicationDate | 2021-June-6 |
PublicationDateYYYYMMDD | 2021-06-06 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-June-6 day: 06 |
PublicationDecade | 2020 |
PublicationTitle | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) |
PublicationTitleAbbrev | ICASSP |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0008748 |
Score | 2.183171 |
Snippet | With the rapid growth of data sharing through social media networks, determining relevant data items concerning a particular subject becomes paramount. We... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 2495 |
SubjectTerms | Conferences data relevance analysis feature embedding forensic application Image sanitization semi-supervised learning Semisupervised learning Signal processing Signal processing algorithms Social networking (online) Supervised learning Training |
Title | Semi-Supervised Feature Embedding for Data Sanitization in Real-World Events |
URI | https://ieeexplore.ieee.org/document/9414461 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Na8IwHA3O03bZh459k8OOS22bpE2OwyluzCHrBG-ST5BhFW0v--uX1Oo-2GG3EkhSEsh7r33vFwBuPWw5GJBIWGkRiUKOuFQEmRQrKxihHPu88_AlGYzJ04ROGuBul4UxxlTmMxP4x-pfvl6o0n8q63Di1YvTOntOuG2yWrtTl6WEbZ06Ie88du-zbOTANvb-rTgK6r4_LlGpMKR_CIbb2TfWkfegLGSgPn4VZvzv6x2B9ldaD452OHQMGiY_AQffCg22wHNm5jOUlUt_MqyNhp75lSsDe3NptO8GHXmFD6IQMPMFMep0Jpzl8NVRSVR5bmDPmyPXbTDu9966A1Tfo4BmcYgLRC3DJtFUccd1HCMkTpLFUgkthMVUEKl0YpmIU-MEK5csFKlyzCCyzNMfFuFT0MwXuTkDUFFLtdWcGMWJwEq6QYnjLFYnGhNJz0HLr8t0uSmVMa2X5OLv5kuw7_emcl4lV6BZrEpz7TC-kDfV5n4CE6umvA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JTwIxGG2IHtSLCxh3e_Boh2HazkyPBiGgQIgDCTfSNSGGgcDMxV9vOwy4xIO3pkmXtEnf-9r3vgLw4GDLwoBA3AiDSMNniAlJkI6wNDwmlGHnd-4Pws6YvEzopAIed14YrXUhPtOeKxZv-Wohc3dVVmfERS821tmnzoy7cWvtzt04IvFWq-Ozerf5lCRDC7eBU3AFDa9s_eMblQJF2segvx1_Ix559_JMePLjV2rG_07wBNS-_HpwuEOiU1DR6Rk4-pZqsAp6iZ7PUJIv3dmw1go67pevNGzNhVauGbT0FT7zjMPEpcQo_ZlwlsI3SyZRobqBLSePXNfAuN0aNTuo_EkBzQIfZ4iaGOtQUcks27GckNigLBCSK84NppwIqUIT8yDSNmRlIvZ5JC03aJjYEaC4gc_BXrpI9QWAkhqqjGJES0Y4lsJ2SixrMSpUmAh6CapuXabLTbKMabkkV39X34ODzqjfm_a6g9drcOj2qdBhhTdgL1vl-tYifibuio3-BPU2qgQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=Semi-Supervised+Feature+Embedding+for+Data+Sanitization+in+Real-World+Events&rft.au=Lavi%2C+Bahram&rft.au=Nascimento%2C+Jose&rft.au=Rocha%2C+Anderson&rft.date=2021-06-06&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=2495&rft.epage=2499&rft_id=info:doi/10.1109%2FICASSP39728.2021.9414461&rft.externalDocID=9414461 |