Semi-Supervised Feature Embedding for Data Sanitization in Real-World Events

With the rapid growth of data sharing through social media networks, determining relevant data items concerning a particular subject becomes paramount. We address the issue of establishing which images represent an event of interest through a semi-supervised learning technique. The method learns con...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) pp. 2495 - 2499
Main Authors Lavi, Bahram, Nascimento, Jose, Rocha, Anderson
Format Conference Proceeding
LanguageEnglish
Published IEEE 06.06.2021
Subjects
Online AccessGet full text
ISSN2379-190X
DOI10.1109/ICASSP39728.2021.9414461

Cover

Loading…
Abstract With the rapid growth of data sharing through social media networks, determining relevant data items concerning a particular subject becomes paramount. We address the issue of establishing which images represent an event of interest through a semi-supervised learning technique. The method learns consistent and shared features related to an event (from a small set of examples) to propagate them to an unlabeled set. We investigate the behavior of five image feature representations considering low- and high-level features and their combinations. We evaluate the effectiveness of the feature embedding approach on five collected datasets from real-world events.
AbstractList With the rapid growth of data sharing through social media networks, determining relevant data items concerning a particular subject becomes paramount. We address the issue of establishing which images represent an event of interest through a semi-supervised learning technique. The method learns consistent and shared features related to an event (from a small set of examples) to propagate them to an unlabeled set. We investigate the behavior of five image feature representations considering low- and high-level features and their combinations. We evaluate the effectiveness of the feature embedding approach on five collected datasets from real-world events.
Author Rocha, Anderson
Nascimento, Jose
Lavi, Bahram
Author_xml – sequence: 1
  givenname: Bahram
  surname: Lavi
  fullname: Lavi, Bahram
  organization: University of Campinas (Unicamp),Institute of Computing,Campinas,São Paulo,Brazil
– sequence: 2
  givenname: Jose
  surname: Nascimento
  fullname: Nascimento, Jose
  organization: University of Campinas (Unicamp),Institute of Computing,Campinas,São Paulo,Brazil
– sequence: 3
  givenname: Anderson
  surname: Rocha
  fullname: Rocha, Anderson
  organization: University of Campinas (Unicamp),Institute of Computing,Campinas,São Paulo,Brazil
BookMark eNotj9FKwzAUhqMouM09gTd5gdacJG2SS5mbCgXFKno3TptTibTpaLuBPr0Dd_XDd_Hx_XN2EftIjHEQKYBwt0-ru7J8Uc5Im0ohIXUatM7hjC2dsXDEYHKRZedsJpVxCTjxecXm4_gthLBG2xkrSupCUu53NBzCSJ5vCKf9QHzdVeR9iF-86Qd-jxPyEmOYwi9OoY88RP5K2CYf_dB6vj5QnMZrdtlgO9LytAv2vlm_rR6T4vnh2FokQQo1JVljFeU-q10ulXBOa21lVaNHbFSGuqp93liUhkApV1mBphZWQmNzkJkFtWA3_95ARNvdEDocfran8-oPrpVQpA
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP39728.2021.9414461
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781728176055
1728176050
EISSN 2379-190X
EndPage 2499
ExternalDocumentID 9414461
Genre orig-research
GroupedDBID 23M
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-5f83e6d5c962309944482bcadaaf35a4bcd6f8a27e1339b80a7c0821f86125813
IEDL.DBID RIE
IngestDate Wed Aug 27 02:39:01 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-5f83e6d5c962309944482bcadaaf35a4bcd6f8a27e1339b80a7c0821f86125813
PageCount 5
ParticipantIDs ieee_primary_9414461
PublicationCentury 2000
PublicationDate 2021-June-6
PublicationDateYYYYMMDD 2021-06-06
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-June-6
  day: 06
PublicationDecade 2020
PublicationTitle Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998)
PublicationTitleAbbrev ICASSP
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008748
Score 2.183171
Snippet With the rapid growth of data sharing through social media networks, determining relevant data items concerning a particular subject becomes paramount. We...
SourceID ieee
SourceType Publisher
StartPage 2495
SubjectTerms Conferences
data relevance analysis
feature embedding
forensic application
Image sanitization
semi-supervised learning
Semisupervised learning
Signal processing
Signal processing algorithms
Social networking (online)
Supervised learning
Training
Title Semi-Supervised Feature Embedding for Data Sanitization in Real-World Events
URI https://ieeexplore.ieee.org/document/9414461
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Na8IwHA3O03bZh459k8OOS22bpE2OwyluzCHrBG-ST5BhFW0v--uX1Oo-2GG3EkhSEsh7r33vFwBuPWw5GJBIWGkRiUKOuFQEmRQrKxihHPu88_AlGYzJ04ROGuBul4UxxlTmMxP4x-pfvl6o0n8q63Di1YvTOntOuG2yWrtTl6WEbZ06Ie88du-zbOTANvb-rTgK6r4_LlGpMKR_CIbb2TfWkfegLGSgPn4VZvzv6x2B9ldaD452OHQMGiY_AQffCg22wHNm5jOUlUt_MqyNhp75lSsDe3NptO8GHXmFD6IQMPMFMep0Jpzl8NVRSVR5bmDPmyPXbTDu9966A1Tfo4BmcYgLRC3DJtFUccd1HCMkTpLFUgkthMVUEKl0YpmIU-MEK5csFKlyzCCyzNMfFuFT0MwXuTkDUFFLtdWcGMWJwEq6QYnjLFYnGhNJz0HLr8t0uSmVMa2X5OLv5kuw7_emcl4lV6BZrEpz7TC-kDfV5n4CE6umvA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JTwIxGG2IHtSLCxh3e_Boh2HazkyPBiGgQIgDCTfSNSGGgcDMxV9vOwy4xIO3pkmXtEnf-9r3vgLw4GDLwoBA3AiDSMNniAlJkI6wNDwmlGHnd-4Pws6YvEzopAIed14YrXUhPtOeKxZv-Wohc3dVVmfERS821tmnzoy7cWvtzt04IvFWq-Ozerf5lCRDC7eBU3AFDa9s_eMblQJF2segvx1_Ix559_JMePLjV2rG_07wBNS-_HpwuEOiU1DR6Rk4-pZqsAp6iZ7PUJIv3dmw1go67pevNGzNhVauGbT0FT7zjMPEpcQo_ZlwlsI3SyZRobqBLSePXNfAuN0aNTuo_EkBzQIfZ4iaGOtQUcks27GckNigLBCSK84NppwIqUIT8yDSNmRlIvZ5JC03aJjYEaC4gc_BXrpI9QWAkhqqjGJES0Y4lsJ2SixrMSpUmAh6CapuXabLTbKMabkkV39X34ODzqjfm_a6g9drcOj2qdBhhTdgL1vl-tYifibuio3-BPU2qgQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=Semi-Supervised+Feature+Embedding+for+Data+Sanitization+in+Real-World+Events&rft.au=Lavi%2C+Bahram&rft.au=Nascimento%2C+Jose&rft.au=Rocha%2C+Anderson&rft.date=2021-06-06&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=2495&rft.epage=2499&rft_id=info:doi/10.1109%2FICASSP39728.2021.9414461&rft.externalDocID=9414461