End-to-End Video Compressive Sensing Using Anderson-Accelerated Unrolled Networks

Compressive imaging systems with spatial-temporal encoding can be used to capture and reconstruct fast-moving objects. The imaging quality highly depends on the choice of encoding masks and reconstruction methods. In this paper, we present a new network architecture to jointly design the encoding ma...

Full description

Saved in:
Bibliographic Details
Published inIEEE International Conference on Computational Photography pp. 1 - 12
Main Authors Li, Yuqi, Qi, Miao, Gulve, Rahul, Wei, Mian, Genov, Roman, Kutulakos, Kiriakos N., Heidrich, Wolfgang
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Compressive imaging systems with spatial-temporal encoding can be used to capture and reconstruct fast-moving objects. The imaging quality highly depends on the choice of encoding masks and reconstruction methods. In this paper, we present a new network architecture to jointly design the encoding masks and the reconstruction method for compressive high-frame-rate imaging. Unlike previous works, the proposed method takes full advantage of denoising prior to provide a promising frame reconstruction. The network is also flexible enough to optimize full-resolution masks and efficient at reconstructing frames. To this end, we develop a new dense network architecture that embeds Anderson acceleration, known from numerical optimization, directly into the neural network architecture. Our experiments show the optimized masks and the dense accelerated network respectively achieve 1.5 dB and 1 dB improvements in PSNR without adding training parameters. The proposed method outperforms other state-of-the-art methods both in simulations and on real hardware. In addition, we set up a coded two-bucket camera for compressive high-frame-rate imaging, which is robust to imaging noise and provides promising results when recovering nearly 1,000 frames per second.
AbstractList Compressive imaging systems with spatial-temporal encoding can be used to capture and reconstruct fast-moving objects. The imaging quality highly depends on the choice of encoding masks and reconstruction methods. In this paper, we present a new network architecture to jointly design the encoding masks and the reconstruction method for compressive high-frame-rate imaging. Unlike previous works, the proposed method takes full advantage of denoising prior to provide a promising frame reconstruction. The network is also flexible enough to optimize full-resolution masks and efficient at reconstructing frames. To this end, we develop a new dense network architecture that embeds Anderson acceleration, known from numerical optimization, directly into the neural network architecture. Our experiments show the optimized masks and the dense accelerated network respectively achieve 1.5 dB and 1 dB improvements in PSNR without adding training parameters. The proposed method outperforms other state-of-the-art methods both in simulations and on real hardware. In addition, we set up a coded two-bucket camera for compressive high-frame-rate imaging, which is robust to imaging noise and provides promising results when recovering nearly 1,000 frames per second.
Author Gulve, Rahul
Kutulakos, Kiriakos N.
Wei, Mian
Genov, Roman
Qi, Miao
Heidrich, Wolfgang
Li, Yuqi
Author_xml – sequence: 1
  givenname: Yuqi
  surname: Li
  fullname: Li, Yuqi
  organization: VCC imaging group, KAUST,Saudi Arabia
– sequence: 2
  givenname: Miao
  surname: Qi
  fullname: Qi, Miao
  organization: VCC imaging group, KAUST,Saudi Arabia
– sequence: 3
  givenname: Rahul
  surname: Gulve
  fullname: Gulve, Rahul
  organization: University of Toronto,Canada
– sequence: 4
  givenname: Mian
  surname: Wei
  fullname: Wei, Mian
  organization: University of Toronto,Canada
– sequence: 5
  givenname: Roman
  surname: Genov
  fullname: Genov, Roman
  organization: University of Toronto,Canada
– sequence: 6
  givenname: Kiriakos N.
  surname: Kutulakos
  fullname: Kutulakos, Kiriakos N.
  organization: University of Toronto,Canada
– sequence: 7
  givenname: Wolfgang
  surname: Heidrich
  fullname: Heidrich, Wolfgang
  organization: VCC imaging group, KAUST,Saudi Arabia
BookMark eNotUMtKAzEUjaJgrf0CQeYHUm-S5rUsQ62F4gOt2xKTOzI6TUoyKP69oxYO57U4i3NOTmKKSMgVgyljYK9Xdf0wM0aYKQcOU8tAcqGPyMRqwzQ3bIjAjsmIzzSnWgl1RialvAMAU0xaLkbkcRED7RMdpHppA6aqTrt9xlLaT6yeMJY2vlWbP57HgLmkSOfeY4fZ9RiqTcyp6wZzh_1Xyh_lgpw2ris4OeiYbG4Wz_UtXd8vV_V8TVsOoqcyNNyjsjaIX3DrtJup0EjhA_MCGmOVl4FLqQJ7RQ_WAFpENpTaoRNjcvm_2yLidp_bncvf28MJ4gePOlOr
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCP48838.2020.9105237
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781728152301
1728152305
EISSN 2472-7636
EndPage 12
ExternalDocumentID 9105237
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i203t-5df2ce699d39d3929a7a46df53cd1c30f896c5d2556d1bec0980e9ee1c5d7aea3
IEDL.DBID RIE
IngestDate Wed Jul 30 06:12:05 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-5df2ce699d39d3929a7a46df53cd1c30f896c5d2556d1bec0980e9ee1c5d7aea3
PageCount 12
ParticipantIDs ieee_primary_9105237
PublicationCentury 2000
PublicationDate 2020-April
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-April
PublicationDecade 2020
PublicationTitle IEEE International Conference on Computational Photography
PublicationTitleAbbrev ICCP
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001615923
Score 1.992131
Snippet Compressive imaging systems with spatial-temporal encoding can be used to capture and reconstruct fast-moving objects. The imaging quality highly depends on...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Cameras
computational camera
deep neural network
Encoding
high-frame-rate imaging
Image reconstruction
Imaging
Network architecture
Numerical models
Optimization
Photography
Reconstruction algorithms
Training
Title End-to-End Video Compressive Sensing Using Anderson-Accelerated Unrolled Networks
URI https://ieeexplore.ieee.org/document/9105237
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zJ09TN_E3OXg0XZe0aXMcY2MKGxOd7DbS5FWG0MrWefCv96WtG4oHoZA0UBry0nx5r9_3QshtAKEKBUiGFcMCrQKmtNJMh6FB71n7CXdq5MlUjufBwyJcNMjdTgsDACX5DDxXLf_l29xsXaisi9CGflN0QA7Qcau0Wvt4CkIzblZqEXDPV937wWCG01M4Ahf3vfrhH6eolCAyapHJ9-sr7sibty0Sz3z-ysz43_4dkc5erkdnOyA6Jg3ITkir3l_S-uvdtMnjMLOsyBkW9GVlIaduNSiJsB9AnxyVPXulJYmA9kvRS56xvjGITC6hhKXzbO3iDJZOK_L4pkPmo-HzYMzqIxXYivuiYKFNuQGplBXu4kpHOpA2DYWxPTROGitpQuvyktkemtdXsQ8KoIeNkQYtTkkzyzM4IzSKIdXcWh84BDIVMS4HAu8DyZPIanlO2m6Elu9V1oxlPTgXfzdfkkNnpYoTc0WaxXoL1wj3RXJT2vkL0ierEQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pCBeNve_Box2jXbT0SAgEFghEMN9K1b4aYbAaGB_96221CNB5MlqxtsqR5r-vXvn7fK0J3HnDBGfjEFBTxpPCIkEISybkyu2fpRtSqkUdjvz_zHuZ8XkH3Wy0MAOTkM3BsMT_L16na2FBZ00Cb2TcFe2jf4D6nhVprF1Ex4GyWK6UMuOWK5qDTmZgByiyFi7pO-fmPe1RyGOnV0Oi7AwV75M3ZZJGjPn_lZvxvD49QYyfYw5MtFB2jCiQnqFauMHH5_67r6KmbaJKlxLzwy1JDiu18kFNhPwA_WzJ78opzGgFu57KXNCFtpQw22ZQSGs-SlY00aDwu6OPrBpr1utNOn5SXKpAldVlGuI6pAl8IzexDhQyk5-uYM6Vbxj1xKHzFtc1MplvGwa4IXRAALdMYSJDsFFWTNIEzhIMQYkm1doGC58csNBMCM3XPp1GgpX-O6tZCi_cib8aiNM7F38236KA_HQ0Xw8H48RIdWo8VDJkrVM1WG7g24J9FN7nPvwDwEa5b
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Computational+Photography&rft.atitle=End-to-End+Video+Compressive+Sensing+Using+Anderson-Accelerated+Unrolled+Networks&rft.au=Li%2C+Yuqi&rft.au=Qi%2C+Miao&rft.au=Gulve%2C+Rahul&rft.au=Wei%2C+Mian&rft.date=2020-04-01&rft.pub=IEEE&rft.eissn=2472-7636&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FICCP48838.2020.9105237&rft.externalDocID=9105237