Electrooculography Signals Classification for FPGA-based Human-Computer Interaction

Electrooculographic techniques are applied in the development of new technologies that compensate for the limitations of people with motor disabilities. The algorithms in charge of classifying these signals play a fundamental role, mainly for Human Computer Interfaces (HCI), specially when the machi...

Full description

Saved in:
Bibliographic Details
Published in2022 IEEE ANDESCON pp. 1 - 7
Main Authors Asanza, Victor, Miranda, Jesus, Miranda, Jocelyn, Rivas, Leiber, Hernan Peluffo-Ordonez, Diego, Pelaez, Enrique, Loayza, Francis, Alejandro, Otilia
Format Conference Proceeding
LanguageEnglish
Published IEEE 16.11.2022
Subjects
Online AccessGet full text
DOI10.1109/ANDESCON56260.2022.9989664

Cover

Abstract Electrooculographic techniques are applied in the development of new technologies that compensate for the limitations of people with motor disabilities. The algorithms in charge of classifying these signals play a fundamental role, mainly for Human Computer Interfaces (HCI), specially when the machine learning algorithms are implemented in customized hardware like FPGA. In this work, electrooculography data were collected from 10 healthy subjects during six eye movement tasks. Then, the data were filtered and introduced into supervised and unsupervised learning algorithms with six classification labels. The results obtained showed that the SVM algorithm had 93.5% of accuracy, thus being considered the most efficient of the classification algorithms proposed in this work. Then, we develop a custom hardware architecture for real-time implementation of EOG classification model in al FPGA card. We demonstrate the effectiveness of the proposed framework for EOG data classification.
AbstractList Electrooculographic techniques are applied in the development of new technologies that compensate for the limitations of people with motor disabilities. The algorithms in charge of classifying these signals play a fundamental role, mainly for Human Computer Interfaces (HCI), specially when the machine learning algorithms are implemented in customized hardware like FPGA. In this work, electrooculography data were collected from 10 healthy subjects during six eye movement tasks. Then, the data were filtered and introduced into supervised and unsupervised learning algorithms with six classification labels. The results obtained showed that the SVM algorithm had 93.5% of accuracy, thus being considered the most efficient of the classification algorithms proposed in this work. Then, we develop a custom hardware architecture for real-time implementation of EOG classification model in al FPGA card. We demonstrate the effectiveness of the proposed framework for EOG data classification.
Author Miranda, Jesus
Asanza, Victor
Hernan Peluffo-Ordonez, Diego
Loayza, Francis
Rivas, Leiber
Pelaez, Enrique
Alejandro, Otilia
Miranda, Jocelyn
Author_xml – sequence: 1
  givenname: Victor
  surname: Asanza
  fullname: Asanza, Victor
  email: vasanza@espol.edu.ec
  organization: Escuela Superior Politécnica del Litoral - ESPOL,Electrical and Computer Science Engineering Depart.,Guayaquil,Ecuador
– sequence: 2
  givenname: Jesus
  surname: Miranda
  fullname: Miranda, Jesus
  email: jgmirand@espol.edu.ec
  organization: Escuela Superior Politécnica del Litoral - ESPOL,Electrical and Computer Science Engineering Depart.,Guayaquil,Ecuador
– sequence: 3
  givenname: Jocelyn
  surname: Miranda
  fullname: Miranda, Jocelyn
  email: jocammir@espol.edu.ec
  organization: Escuela Superior Politécnica del Litoral - ESPOL,Mechanical and Production Science Engineering Depart.,Guayaquil,Ecuador
– sequence: 4
  givenname: Leiber
  surname: Rivas
  fullname: Rivas, Leiber
  email: lvrivas@espol.edu.ec
  organization: Escuela Superior Politécnica del Litoral - ESPOL,Mechanical and Production Science Engineering Depart.,Guayaquil,Ecuador
– sequence: 5
  givenname: Diego
  surname: Hernan Peluffo-Ordonez
  fullname: Hernan Peluffo-Ordonez, Diego
  email: peluffo.diego@um6p.ma
  organization: Mohammed VI Polytechnic University,MSDA Research Program,Ben Guerir,Morocco,47963
– sequence: 6
  givenname: Enrique
  surname: Pelaez
  fullname: Pelaez, Enrique
  email: epelaez@espol.edu.ec
  organization: Escuela Superior Politécnica del Litoral - ESPOL,Electrical and Computer Science Engineering Depart.,Guayaquil,Ecuador
– sequence: 7
  givenname: Francis
  surname: Loayza
  fullname: Loayza, Francis
  email: floayza@espol.edu.ec
  organization: Escuela Superior Politécnica del Litoral - ESPOL,Mechanical an Production Science Eng. Depart.,Guayaquil,Ecuador
– sequence: 8
  givenname: Otilia
  surname: Alejandro
  fullname: Alejandro, Otilia
  email: oalejan@espol.edu.ec
  organization: Escuela Superior Politécnica del Litoral - ESPOL,Electrical and Computer Science Engineering Depart.,Guayaquil,Ecuador
BookMark eNotj7tOwzAARY0EA5R-AYvFnmA7sWOPUehLqlqkwFz5WSwlduQkQ_-eona5dzn3SPcFPIYYLADvGOUYI_FRHz5XbXM8UEYYygkiJBeCC8bKB7AUFceM0ZJzWopn0K46q6cUo567eE5y-L3A1p-D7EbYdHIcvfNaTj4G6GKC669NnSk5WgO3cy9D1sR-mCeb4C5cU-p_8hU8ueveLu-9AD_r1XezzfbHza6p95knqJgyyl2htBKcYoQEtgpz6nBFNRHSCOcqw1UhkSg1NcRxZ5iSRlVMMkSt1rRYgLeb11trT0PyvUyX0_1q8Qc6RFEO
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ANDESCON56260.2022.9989664
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665488549
1665488549
EndPage 7
ExternalDocumentID 9989664
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-58f3bcb98510091eb185f175c29ad9ff7d8b3a094c5d2f8fd6badb76a605ecc53
IEDL.DBID RIE
IngestDate Thu Jan 18 11:15:06 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-58f3bcb98510091eb185f175c29ad9ff7d8b3a094c5d2f8fd6badb76a605ecc53
PageCount 7
ParticipantIDs ieee_primary_9989664
PublicationCentury 2000
PublicationDate 2022-Nov.-16
PublicationDateYYYYMMDD 2022-11-16
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-Nov.-16
  day: 16
PublicationDecade 2020
PublicationTitle 2022 IEEE ANDESCON
PublicationTitleAbbrev ANDESCON
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8299161
Snippet Electrooculographic techniques are applied in the development of new technologies that compensate for the limitations of people with motor disabilities. The...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Electrooculography
Filtering algorithms
FPGA
Hardware
Human computer interaction
Machine learning algorithms
Pattern classification
Support vector machines
Title Electrooculography Signals Classification for FPGA-based Human-Computer Interaction
URI https://ieeexplore.ieee.org/document/9989664
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NawIxEA3qqae2aOk3OfTYrDG7yWaPYrVS0ApW8Cb5LFLQUtZLf30n2dXS0kNvSyC7IRMyb2bnvUHoTntjnKGWSOE5gVuyIJK5jIC3ZrTQubdRjmEyFeNF9rTkywa6P3BhnHOx-Mwl4TH-y7dbswupsi6EBoDOsyZqwjGruFq1jmiPFt3-9GE4HzxPecDoEPkxltQTfnROiY5jdIwm-09W9SJvya7Uifn8pcb43zWdoM43RQ_PDs7nFDXcpo3mw6qpDczaS1Hj-fo1SCTj2P0y1AVFU2DAqng0e-yT4MYsjrl8sm_xgGOesKI8dNBiNHwZjEndNYGsGU1LwqVPtdEFQCnATz24iyX3ABIMK5QNGVordaogqjPcMi-9FVpZnQsFgQ3Yk6dnqLXZbtw5whCKaCtUqqlnmXBawktSxYrcUWqUNBeoHTZk9V4JY6zqvbj8e_gKHQWjBCJfT1yjVvmxczfg0Ut9G035BfHhpGY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEJ0gHvSkBozf7sGjC2XbLdsjQRAVKgmQeCPdL0NMwJhy8dc7uy0YjQdvTZNtm51k35vpzHsAN9IqZVSgqYgtp3hKJlQwE1FEaxYksm21l2MYpfFgFj2-8JcK3G5nYYwxvvnMNNyl_5evV2rtSmVNTA2QnUc7sIu4H_FiWqtUEm0FSbOT3vUm3eeUO5aOuR9jjXLJD-8UDx39AxhtXlp0jLw11rlsqM9feoz__apDqH8P6ZHxFn6OoGKWNZj0ClsbXLURoyaTxasTSSbe_9J1BvlgEGSrpD--71AHZJr4aj7dmDwQXykshh7qMOv3pt0BLX0T6IIFYU65sKFUMkEyhQyqhaex4BZpgmJJpl2NVgsZZpjXKa6ZFVbHMtOyHWeY2mBEeXgM1eVqaU6AYDIidZyFMrAsio0U-JAwY0nbBIHKhDqFmtuQ-XshjTEv9-Ls79vXsDeYjobz4UP6dA77LkBurK8VX0A1_1ibS8T3XF75sH4Buoansw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+ANDESCON&rft.atitle=Electrooculography+Signals+Classification+for+FPGA-based+Human-Computer+Interaction&rft.au=Asanza%2C+Victor&rft.au=Miranda%2C+Jesus&rft.au=Miranda%2C+Jocelyn&rft.au=Rivas%2C+Leiber&rft.date=2022-11-16&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FANDESCON56260.2022.9989664&rft.externalDocID=9989664