Electrooculography Signals Classification for FPGA-based Human-Computer Interaction
Electrooculographic techniques are applied in the development of new technologies that compensate for the limitations of people with motor disabilities. The algorithms in charge of classifying these signals play a fundamental role, mainly for Human Computer Interfaces (HCI), specially when the machi...
Saved in:
Published in | 2022 IEEE ANDESCON pp. 1 - 7 |
---|---|
Main Authors | , , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
16.11.2022
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ANDESCON56260.2022.9989664 |
Cover
Abstract | Electrooculographic techniques are applied in the development of new technologies that compensate for the limitations of people with motor disabilities. The algorithms in charge of classifying these signals play a fundamental role, mainly for Human Computer Interfaces (HCI), specially when the machine learning algorithms are implemented in customized hardware like FPGA. In this work, electrooculography data were collected from 10 healthy subjects during six eye movement tasks. Then, the data were filtered and introduced into supervised and unsupervised learning algorithms with six classification labels. The results obtained showed that the SVM algorithm had 93.5% of accuracy, thus being considered the most efficient of the classification algorithms proposed in this work. Then, we develop a custom hardware architecture for real-time implementation of EOG classification model in al FPGA card. We demonstrate the effectiveness of the proposed framework for EOG data classification. |
---|---|
AbstractList | Electrooculographic techniques are applied in the development of new technologies that compensate for the limitations of people with motor disabilities. The algorithms in charge of classifying these signals play a fundamental role, mainly for Human Computer Interfaces (HCI), specially when the machine learning algorithms are implemented in customized hardware like FPGA. In this work, electrooculography data were collected from 10 healthy subjects during six eye movement tasks. Then, the data were filtered and introduced into supervised and unsupervised learning algorithms with six classification labels. The results obtained showed that the SVM algorithm had 93.5% of accuracy, thus being considered the most efficient of the classification algorithms proposed in this work. Then, we develop a custom hardware architecture for real-time implementation of EOG classification model in al FPGA card. We demonstrate the effectiveness of the proposed framework for EOG data classification. |
Author | Miranda, Jesus Asanza, Victor Hernan Peluffo-Ordonez, Diego Loayza, Francis Rivas, Leiber Pelaez, Enrique Alejandro, Otilia Miranda, Jocelyn |
Author_xml | – sequence: 1 givenname: Victor surname: Asanza fullname: Asanza, Victor email: vasanza@espol.edu.ec organization: Escuela Superior Politécnica del Litoral - ESPOL,Electrical and Computer Science Engineering Depart.,Guayaquil,Ecuador – sequence: 2 givenname: Jesus surname: Miranda fullname: Miranda, Jesus email: jgmirand@espol.edu.ec organization: Escuela Superior Politécnica del Litoral - ESPOL,Electrical and Computer Science Engineering Depart.,Guayaquil,Ecuador – sequence: 3 givenname: Jocelyn surname: Miranda fullname: Miranda, Jocelyn email: jocammir@espol.edu.ec organization: Escuela Superior Politécnica del Litoral - ESPOL,Mechanical and Production Science Engineering Depart.,Guayaquil,Ecuador – sequence: 4 givenname: Leiber surname: Rivas fullname: Rivas, Leiber email: lvrivas@espol.edu.ec organization: Escuela Superior Politécnica del Litoral - ESPOL,Mechanical and Production Science Engineering Depart.,Guayaquil,Ecuador – sequence: 5 givenname: Diego surname: Hernan Peluffo-Ordonez fullname: Hernan Peluffo-Ordonez, Diego email: peluffo.diego@um6p.ma organization: Mohammed VI Polytechnic University,MSDA Research Program,Ben Guerir,Morocco,47963 – sequence: 6 givenname: Enrique surname: Pelaez fullname: Pelaez, Enrique email: epelaez@espol.edu.ec organization: Escuela Superior Politécnica del Litoral - ESPOL,Electrical and Computer Science Engineering Depart.,Guayaquil,Ecuador – sequence: 7 givenname: Francis surname: Loayza fullname: Loayza, Francis email: floayza@espol.edu.ec organization: Escuela Superior Politécnica del Litoral - ESPOL,Mechanical an Production Science Eng. Depart.,Guayaquil,Ecuador – sequence: 8 givenname: Otilia surname: Alejandro fullname: Alejandro, Otilia email: oalejan@espol.edu.ec organization: Escuela Superior Politécnica del Litoral - ESPOL,Electrical and Computer Science Engineering Depart.,Guayaquil,Ecuador |
BookMark | eNotj7tOwzAARY0EA5R-AYvFnmA7sWOPUehLqlqkwFz5WSwlduQkQ_-eona5dzn3SPcFPIYYLADvGOUYI_FRHz5XbXM8UEYYygkiJBeCC8bKB7AUFceM0ZJzWopn0K46q6cUo567eE5y-L3A1p-D7EbYdHIcvfNaTj4G6GKC669NnSk5WgO3cy9D1sR-mCeb4C5cU-p_8hU8ueveLu-9AD_r1XezzfbHza6p95knqJgyyl2htBKcYoQEtgpz6nBFNRHSCOcqw1UhkSg1NcRxZ5iSRlVMMkSt1rRYgLeb11trT0PyvUyX0_1q8Qc6RFEO |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ANDESCON56260.2022.9989664 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781665488549 1665488549 |
EndPage | 7 |
ExternalDocumentID | 9989664 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i203t-58f3bcb98510091eb185f175c29ad9ff7d8b3a094c5d2f8fd6badb76a605ecc53 |
IEDL.DBID | RIE |
IngestDate | Thu Jan 18 11:15:06 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-58f3bcb98510091eb185f175c29ad9ff7d8b3a094c5d2f8fd6badb76a605ecc53 |
PageCount | 7 |
ParticipantIDs | ieee_primary_9989664 |
PublicationCentury | 2000 |
PublicationDate | 2022-Nov.-16 |
PublicationDateYYYYMMDD | 2022-11-16 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-Nov.-16 day: 16 |
PublicationDecade | 2020 |
PublicationTitle | 2022 IEEE ANDESCON |
PublicationTitleAbbrev | ANDESCON |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8299161 |
Snippet | Electrooculographic techniques are applied in the development of new technologies that compensate for the limitations of people with motor disabilities. The... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Electrooculography Filtering algorithms FPGA Hardware Human computer interaction Machine learning algorithms Pattern classification Support vector machines |
Title | Electrooculography Signals Classification for FPGA-based Human-Computer Interaction |
URI | https://ieeexplore.ieee.org/document/9989664 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NawIxEA3qqae2aOk3OfTYrDG7yWaPYrVS0ApW8Cb5LFLQUtZLf30n2dXS0kNvSyC7IRMyb2bnvUHoTntjnKGWSOE5gVuyIJK5jIC3ZrTQubdRjmEyFeNF9rTkywa6P3BhnHOx-Mwl4TH-y7dbswupsi6EBoDOsyZqwjGruFq1jmiPFt3-9GE4HzxPecDoEPkxltQTfnROiY5jdIwm-09W9SJvya7Uifn8pcb43zWdoM43RQ_PDs7nFDXcpo3mw6qpDczaS1Hj-fo1SCTj2P0y1AVFU2DAqng0e-yT4MYsjrl8sm_xgGOesKI8dNBiNHwZjEndNYGsGU1LwqVPtdEFQCnATz24iyX3ABIMK5QNGVordaogqjPcMi-9FVpZnQsFgQ3Yk6dnqLXZbtw5whCKaCtUqqlnmXBawktSxYrcUWqUNBeoHTZk9V4JY6zqvbj8e_gKHQWjBCJfT1yjVvmxczfg0Ut9G035BfHhpGY |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEJ0gHvSkBozf7sGjC2XbLdsjQRAVKgmQeCPdL0NMwJhy8dc7uy0YjQdvTZNtm51k35vpzHsAN9IqZVSgqYgtp3hKJlQwE1FEaxYksm21l2MYpfFgFj2-8JcK3G5nYYwxvvnMNNyl_5evV2rtSmVNTA2QnUc7sIu4H_FiWqtUEm0FSbOT3vUm3eeUO5aOuR9jjXLJD-8UDx39AxhtXlp0jLw11rlsqM9feoz__apDqH8P6ZHxFn6OoGKWNZj0ClsbXLURoyaTxasTSSbe_9J1BvlgEGSrpD--71AHZJr4aj7dmDwQXykshh7qMOv3pt0BLX0T6IIFYU65sKFUMkEyhQyqhaex4BZpgmJJpl2NVgsZZpjXKa6ZFVbHMtOyHWeY2mBEeXgM1eVqaU6AYDIidZyFMrAsio0U-JAwY0nbBIHKhDqFmtuQ-XshjTEv9-Ls79vXsDeYjobz4UP6dA77LkBurK8VX0A1_1ibS8T3XF75sH4Buoansw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+ANDESCON&rft.atitle=Electrooculography+Signals+Classification+for+FPGA-based+Human-Computer+Interaction&rft.au=Asanza%2C+Victor&rft.au=Miranda%2C+Jesus&rft.au=Miranda%2C+Jocelyn&rft.au=Rivas%2C+Leiber&rft.date=2022-11-16&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FANDESCON56260.2022.9989664&rft.externalDocID=9989664 |