Stochastic MPC with Multi-modal Predictions for Traffic Intersections

We propose a Stochastic MPC (SMPC) formu-lation for autonomous driving at traffic intersections which incorporates multi-modal predictions of surrounding vehicles given by Gaussian Mixture Models (GMM) for collision avoid-ance constraints. Our main theoretical contribution is a SMPC formulation that...

Full description

Saved in:
Bibliographic Details
Published in2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC) pp. 635 - 640
Main Authors Nair, Siddharth H., Govindarajan, Vijay, Lin, Theresa, Meissen, Chris, Tseng, H. Eric, Borrelli, Francesco
Format Conference Proceeding
LanguageEnglish
Published IEEE 08.10.2022
Subjects
Online AccessGet full text
DOI10.1109/ITSC55140.2022.9921751

Cover

Abstract We propose a Stochastic MPC (SMPC) formu-lation for autonomous driving at traffic intersections which incorporates multi-modal predictions of surrounding vehicles given by Gaussian Mixture Models (GMM) for collision avoid-ance constraints. Our main theoretical contribution is a SMPC formulation that optimizes over a novel feedback policy class designed to exploit additional structure in the GMM predictions, and that is amenable to convex programming. The use of feedback policies for prediction is motivated by the need for reduced conservatism in handling multi-modal predictions of the surrounding vehicles, especially prevalent in traffic intersection scenarios. We evaluate our algorithm along axes of mobility, comfort, conservatism and computational efficiency at a simulated intersection in CARLA. Our simulations use a kinematic bicycle model and multimodal predictions trained on a subset of the Lyft Level 5 prediction dataset. To demonstrate the impact of optimizing over feedback policies, we compare our algorithm with two SMPC baselines that handle multi-modal collision avoidance chance constraints by optimizing over open-loop sequences.
AbstractList We propose a Stochastic MPC (SMPC) formu-lation for autonomous driving at traffic intersections which incorporates multi-modal predictions of surrounding vehicles given by Gaussian Mixture Models (GMM) for collision avoid-ance constraints. Our main theoretical contribution is a SMPC formulation that optimizes over a novel feedback policy class designed to exploit additional structure in the GMM predictions, and that is amenable to convex programming. The use of feedback policies for prediction is motivated by the need for reduced conservatism in handling multi-modal predictions of the surrounding vehicles, especially prevalent in traffic intersection scenarios. We evaluate our algorithm along axes of mobility, comfort, conservatism and computational efficiency at a simulated intersection in CARLA. Our simulations use a kinematic bicycle model and multimodal predictions trained on a subset of the Lyft Level 5 prediction dataset. To demonstrate the impact of optimizing over feedback policies, we compare our algorithm with two SMPC baselines that handle multi-modal collision avoidance chance constraints by optimizing over open-loop sequences.
Author Govindarajan, Vijay
Tseng, H. Eric
Nair, Siddharth H.
Lin, Theresa
Meissen, Chris
Borrelli, Francesco
Author_xml – sequence: 1
  givenname: Siddharth H.
  surname: Nair
  fullname: Nair, Siddharth H.
  email: siddharth_nair@berkeley.edu
  organization: Model Predictive Control Laboratory,UC,Berkeley
– sequence: 2
  givenname: Vijay
  surname: Govindarajan
  fullname: Govindarajan, Vijay
  email: govvijay@berkeley.edu
  organization: Model Predictive Control Laboratory,UC,Berkeley
– sequence: 3
  givenname: Theresa
  surname: Lin
  fullname: Lin, Theresa
  email: tlin33@ford.com
  organization: Ford AV LLC
– sequence: 4
  givenname: Chris
  surname: Meissen
  fullname: Meissen, Chris
  email: cmeissen@ford.com
  organization: Ford AV LLC
– sequence: 5
  givenname: H. Eric
  surname: Tseng
  fullname: Tseng, H. Eric
  email: htseng@ford.com
  organization: Ford Research and Advanced Engineering
– sequence: 6
  givenname: Francesco
  surname: Borrelli
  fullname: Borrelli, Francesco
  email: fborrelli@berkeley.edu
  organization: Model Predictive Control Laboratory,UC,Berkeley
BookMark eNotj11LwzAYhSPohc79gsHIH2jNm4-muZQytbDhYPV6pMkbFuhaSSPiv3ewXR04z-GB80Tux2lEQtbASgBmXtru0CgFkpWccV4aw0EruCNLo2uoKiWrumbskWwOeXInO-fo6G7f0N-YT3T3M-RYnCdvB7pP6KPLcRpnGqZEu2RDuIzbMWOa8UqeyUOww4zLWy7I19umaz6K7ed727xui8iZyIUSQVvg2lpwvAcvwfQeteZcWO1q7LlkQnqrA2qjOEODqCSDS4XeSicWZHX1RkQ8fqd4tunveDsn_gGjeUnq
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ITSC55140.2022.9921751
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665468800
1665468807
EndPage 640
ExternalDocumentID 9921751
Genre orig-research
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i203t-53f7a127aa1c2b1d419bde77223a7c8eb24034da7fe79520e9ee54014daeda4c3
IEDL.DBID RIE
IngestDate Thu Jan 18 11:14:35 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-53f7a127aa1c2b1d419bde77223a7c8eb24034da7fe79520e9ee54014daeda4c3
PageCount 6
ParticipantIDs ieee_primary_9921751
PublicationCentury 2000
PublicationDate 2022-Oct.-8
PublicationDateYYYYMMDD 2022-10-08
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-Oct.-8
  day: 08
PublicationDecade 2020
PublicationTitle 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC)
PublicationTitleAbbrev ITSC
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.0157983
Snippet We propose a Stochastic MPC (SMPC) formu-lation for autonomous driving at traffic intersections which incorporates multi-modal predictions of surrounding...
SourceID ieee
SourceType Publisher
StartPage 635
SubjectTerms Computational efficiency
Computational modeling
Prediction algorithms
Predictive models
Programming
Stochastic processes
Title Stochastic MPC with Multi-modal Predictions for Traffic Intersections
URI https://ieeexplore.ieee.org/document/9921751
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA21J08qrfhNDh7NNslmu5tzaalCpdAWeiv5mKKoXdHtxV9vJrtWFA_eluyGZJPAm5nMe0PIteYmtXqNjB6XsWARW1Yo0AzLhwju-zloJApP7vvjhbpbZssWudlxYQAgJp9Bgo_xLt-Xbouhsp7WwYBGvvReOGY1V6sh_Qque7fz2QDxnwevT8qk-fhH1ZQIGqMDMvkars4VeUq2lU3cxy8lxv_O55B0v-l5dLoDniPSgk2HDGdV6R4Myi7TyXRAMcBKI72WvZTePIceeCcTjxkNlioNKIXyETTGBN-hftMli9FwPhizpkYCe5Q8rViWrnMjZG6McNIKr4S2HoLJLFOTuyL4zYqnypt8DbnOJA9LD8FIE6EJvFEuPSbtTbmBE0J1P1NWFAZdCCW9s14UoaM2RRRZK05JB5dg9VrLYKyavz_7u_mc7OM21OlyF6RdvW3hMuB3Za_ixn0CRwab9Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaqMsAEqEW88cCIU9txmniuWhVoqkptpW6VXxUIaBCkC7-esxOKQAxskRPLr0jfd-f77hC6llTFWq68osckBBixJplwkvjyIYzabuqkFwrn4-5wLu4WyaKBbrZaGOdcCD5zkX8Md_m2MBvvKutICQTa66V3APdFUqm1atkvo7JzO5v2PAOgYPdxHtWf_6ibEmBjsI_yrwGraJGnaFPqyHz8ysX43xkdoPa3QA9PttBziBpu3UL9aVmYB-UTL-N80sPexYqDwJa8FFY9Qw9_KxN-NAxcFQNO-QQSOHgF3131po3mg_6sNyR1lQTyyGlckiRepYrxVClmuGZWMKmtA9LMY5WaDCxnQWNhVbpyqUw4hc13QNMYNDmrhImPUHNdrN0xwrKbCM0y5Y0Iwa3RlmXQUaospFnLTlDLb8HytUqEsaxXf_p38xXaHc7y0XJ0O74_Q3v-SKrguXPULN827gLQvNSX4RA_AaI0n0I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+25th+International+Conference+on+Intelligent+Transportation+Systems+%28ITSC%29&rft.atitle=Stochastic+MPC+with+Multi-modal+Predictions+for+Traffic+Intersections&rft.au=Nair%2C+Siddharth+H.&rft.au=Govindarajan%2C+Vijay&rft.au=Lin%2C+Theresa&rft.au=Meissen%2C+Chris&rft.date=2022-10-08&rft.pub=IEEE&rft.spage=635&rft.epage=640&rft_id=info:doi/10.1109%2FITSC55140.2022.9921751&rft.externalDocID=9921751