Stochastic MPC with Multi-modal Predictions for Traffic Intersections
We propose a Stochastic MPC (SMPC) formu-lation for autonomous driving at traffic intersections which incorporates multi-modal predictions of surrounding vehicles given by Gaussian Mixture Models (GMM) for collision avoid-ance constraints. Our main theoretical contribution is a SMPC formulation that...
Saved in:
Published in | 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC) pp. 635 - 640 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
08.10.2022
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ITSC55140.2022.9921751 |
Cover
Abstract | We propose a Stochastic MPC (SMPC) formu-lation for autonomous driving at traffic intersections which incorporates multi-modal predictions of surrounding vehicles given by Gaussian Mixture Models (GMM) for collision avoid-ance constraints. Our main theoretical contribution is a SMPC formulation that optimizes over a novel feedback policy class designed to exploit additional structure in the GMM predictions, and that is amenable to convex programming. The use of feedback policies for prediction is motivated by the need for reduced conservatism in handling multi-modal predictions of the surrounding vehicles, especially prevalent in traffic intersection scenarios. We evaluate our algorithm along axes of mobility, comfort, conservatism and computational efficiency at a simulated intersection in CARLA. Our simulations use a kinematic bicycle model and multimodal predictions trained on a subset of the Lyft Level 5 prediction dataset. To demonstrate the impact of optimizing over feedback policies, we compare our algorithm with two SMPC baselines that handle multi-modal collision avoidance chance constraints by optimizing over open-loop sequences. |
---|---|
AbstractList | We propose a Stochastic MPC (SMPC) formu-lation for autonomous driving at traffic intersections which incorporates multi-modal predictions of surrounding vehicles given by Gaussian Mixture Models (GMM) for collision avoid-ance constraints. Our main theoretical contribution is a SMPC formulation that optimizes over a novel feedback policy class designed to exploit additional structure in the GMM predictions, and that is amenable to convex programming. The use of feedback policies for prediction is motivated by the need for reduced conservatism in handling multi-modal predictions of the surrounding vehicles, especially prevalent in traffic intersection scenarios. We evaluate our algorithm along axes of mobility, comfort, conservatism and computational efficiency at a simulated intersection in CARLA. Our simulations use a kinematic bicycle model and multimodal predictions trained on a subset of the Lyft Level 5 prediction dataset. To demonstrate the impact of optimizing over feedback policies, we compare our algorithm with two SMPC baselines that handle multi-modal collision avoidance chance constraints by optimizing over open-loop sequences. |
Author | Govindarajan, Vijay Tseng, H. Eric Nair, Siddharth H. Lin, Theresa Meissen, Chris Borrelli, Francesco |
Author_xml | – sequence: 1 givenname: Siddharth H. surname: Nair fullname: Nair, Siddharth H. email: siddharth_nair@berkeley.edu organization: Model Predictive Control Laboratory,UC,Berkeley – sequence: 2 givenname: Vijay surname: Govindarajan fullname: Govindarajan, Vijay email: govvijay@berkeley.edu organization: Model Predictive Control Laboratory,UC,Berkeley – sequence: 3 givenname: Theresa surname: Lin fullname: Lin, Theresa email: tlin33@ford.com organization: Ford AV LLC – sequence: 4 givenname: Chris surname: Meissen fullname: Meissen, Chris email: cmeissen@ford.com organization: Ford AV LLC – sequence: 5 givenname: H. Eric surname: Tseng fullname: Tseng, H. Eric email: htseng@ford.com organization: Ford Research and Advanced Engineering – sequence: 6 givenname: Francesco surname: Borrelli fullname: Borrelli, Francesco email: fborrelli@berkeley.edu organization: Model Predictive Control Laboratory,UC,Berkeley |
BookMark | eNotj11LwzAYhSPohc79gsHIH2jNm4-muZQytbDhYPV6pMkbFuhaSSPiv3ewXR04z-GB80Tux2lEQtbASgBmXtru0CgFkpWccV4aw0EruCNLo2uoKiWrumbskWwOeXInO-fo6G7f0N-YT3T3M-RYnCdvB7pP6KPLcRpnGqZEu2RDuIzbMWOa8UqeyUOww4zLWy7I19umaz6K7ed727xui8iZyIUSQVvg2lpwvAcvwfQeteZcWO1q7LlkQnqrA2qjOEODqCSDS4XeSicWZHX1RkQ8fqd4tunveDsn_gGjeUnq |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ITSC55140.2022.9921751 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781665468800 1665468807 |
EndPage | 640 |
ExternalDocumentID | 9921751 |
Genre | orig-research |
GroupedDBID | 6IE 6IH CBEJK RIE RIO |
ID | FETCH-LOGICAL-i203t-53f7a127aa1c2b1d419bde77223a7c8eb24034da7fe79520e9ee54014daeda4c3 |
IEDL.DBID | RIE |
IngestDate | Thu Jan 18 11:14:35 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-53f7a127aa1c2b1d419bde77223a7c8eb24034da7fe79520e9ee54014daeda4c3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_9921751 |
PublicationCentury | 2000 |
PublicationDate | 2022-Oct.-8 |
PublicationDateYYYYMMDD | 2022-10-08 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-Oct.-8 day: 08 |
PublicationDecade | 2020 |
PublicationTitle | 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC) |
PublicationTitleAbbrev | ITSC |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 2.0157983 |
Snippet | We propose a Stochastic MPC (SMPC) formu-lation for autonomous driving at traffic intersections which incorporates multi-modal predictions of surrounding... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 635 |
SubjectTerms | Computational efficiency Computational modeling Prediction algorithms Predictive models Programming Stochastic processes |
Title | Stochastic MPC with Multi-modal Predictions for Traffic Intersections |
URI | https://ieeexplore.ieee.org/document/9921751 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA21J08qrfhNDh7NNslmu5tzaalCpdAWeiv5mKKoXdHtxV9vJrtWFA_eluyGZJPAm5nMe0PIteYmtXqNjB6XsWARW1Yo0AzLhwju-zloJApP7vvjhbpbZssWudlxYQAgJp9Bgo_xLt-Xbouhsp7WwYBGvvReOGY1V6sh_Qque7fz2QDxnwevT8qk-fhH1ZQIGqMDMvkars4VeUq2lU3cxy8lxv_O55B0v-l5dLoDniPSgk2HDGdV6R4Myi7TyXRAMcBKI72WvZTePIceeCcTjxkNlioNKIXyETTGBN-hftMli9FwPhizpkYCe5Q8rViWrnMjZG6McNIKr4S2HoLJLFOTuyL4zYqnypt8DbnOJA9LD8FIE6EJvFEuPSbtTbmBE0J1P1NWFAZdCCW9s14UoaM2RRRZK05JB5dg9VrLYKyavz_7u_mc7OM21OlyF6RdvW3hMuB3Za_ixn0CRwab9Q |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaqMsAEqEW88cCIU9txmniuWhVoqkptpW6VXxUIaBCkC7-esxOKQAxskRPLr0jfd-f77hC6llTFWq68osckBBixJplwkvjyIYzabuqkFwrn4-5wLu4WyaKBbrZaGOdcCD5zkX8Md_m2MBvvKutICQTa66V3APdFUqm1atkvo7JzO5v2PAOgYPdxHtWf_6ibEmBjsI_yrwGraJGnaFPqyHz8ysX43xkdoPa3QA9PttBziBpu3UL9aVmYB-UTL-N80sPexYqDwJa8FFY9Qw9_KxN-NAxcFQNO-QQSOHgF3131po3mg_6sNyR1lQTyyGlckiRepYrxVClmuGZWMKmtA9LMY5WaDCxnQWNhVbpyqUw4hc13QNMYNDmrhImPUHNdrN0xwrKbCM0y5Y0Iwa3RlmXQUaospFnLTlDLb8HytUqEsaxXf_p38xXaHc7y0XJ0O74_Q3v-SKrguXPULN827gLQvNSX4RA_AaI0n0I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+25th+International+Conference+on+Intelligent+Transportation+Systems+%28ITSC%29&rft.atitle=Stochastic+MPC+with+Multi-modal+Predictions+for+Traffic+Intersections&rft.au=Nair%2C+Siddharth+H.&rft.au=Govindarajan%2C+Vijay&rft.au=Lin%2C+Theresa&rft.au=Meissen%2C+Chris&rft.date=2022-10-08&rft.pub=IEEE&rft.spage=635&rft.epage=640&rft_id=info:doi/10.1109%2FITSC55140.2022.9921751&rft.externalDocID=9921751 |