GridDehazeNet: Attention-Based Multi-Scale Network for Image Dehazing
We propose an end-to-end trainable Convolutional Neural Network (CNN), named GridDehazeNet, for single image dehazing. The GridDehazeNet consists of three modules: pre-processing, backbone, and post-processing. The trainable pre-processing module can generate learned inputs with better diversity and...
Saved in:
Published in | Proceedings / IEEE International Conference on Computer Vision pp. 7313 - 7322 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.10.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 2380-7504 |
DOI | 10.1109/ICCV.2019.00741 |
Cover
Loading…
Abstract | We propose an end-to-end trainable Convolutional Neural Network (CNN), named GridDehazeNet, for single image dehazing. The GridDehazeNet consists of three modules: pre-processing, backbone, and post-processing. The trainable pre-processing module can generate learned inputs with better diversity and more pertinent features as compared to those derived inputs produced by hand-selected pre-processing methods. The backbone module implements a novel attention-based multi-scale estimation on a grid network, which can effectively alleviate the bottleneck issue often encountered in the conventional multi-scale approach. The post-processing module helps to reduce the artifacts in the final output. Experimental results indicate that the GridDehazeNet outperforms the state-of-the-arts on both synthetic and real-world images. The proposed hazing method does not rely on the atmosphere scattering model, and we provide an explanation as to why it is not necessarily beneficial to take advantage of the dimension reduction offered by the atmosphere scattering model for image dehazing, even if only the dehazing results on synthetic images are concerned. |
---|---|
AbstractList | We propose an end-to-end trainable Convolutional Neural Network (CNN), named GridDehazeNet, for single image dehazing. The GridDehazeNet consists of three modules: pre-processing, backbone, and post-processing. The trainable pre-processing module can generate learned inputs with better diversity and more pertinent features as compared to those derived inputs produced by hand-selected pre-processing methods. The backbone module implements a novel attention-based multi-scale estimation on a grid network, which can effectively alleviate the bottleneck issue often encountered in the conventional multi-scale approach. The post-processing module helps to reduce the artifacts in the final output. Experimental results indicate that the GridDehazeNet outperforms the state-of-the-arts on both synthetic and real-world images. The proposed hazing method does not rely on the atmosphere scattering model, and we provide an explanation as to why it is not necessarily beneficial to take advantage of the dimension reduction offered by the atmosphere scattering model for image dehazing, even if only the dehazing results on synthetic images are concerned. |
Author | Chen, Jun Shi, Zhihao Liu, Xiaohong Ma, Yongrui |
Author_xml | – sequence: 1 givenname: Xiaohong surname: Liu fullname: Liu, Xiaohong organization: McMaster University – sequence: 2 givenname: Yongrui surname: Ma fullname: Ma, Yongrui organization: McMaster University – sequence: 3 givenname: Zhihao surname: Shi fullname: Shi, Zhihao organization: McMaster University – sequence: 4 givenname: Jun surname: Chen fullname: Chen, Jun organization: McMaster University |
BookMark | eNotjstOwzAURA0CibZ0zYJNfsDh-hHHZlfSUiIVWPDYVo59UwxpghIjBF9PBKxmM2fOTMlR27VIyBmDlDEwF2VRPKccmEkBcskOyNzkmuVcM6lB6EMy4UIDzTOQJ2Q6DK8AwnCtJmS17oNf4ov9xjuMl8kiRmxj6Fp6ZQf0ye1HEwN9cLbBZCx8dv1bUnd9Uu7tDpNfMLS7U3Jc22bA-X_OyNP16rG4oZv7dVksNjRwEJGOei-Ysjljlcycz5SR439dmRq0V86gBmcqYUVmvcq5ZAor7b2rJVeWOzEj53-7ARG3733Y2_5ra4CByoz4AVjLS58 |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICCV.2019.00741 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9781728148038 1728148030 |
EISSN | 2380-7504 |
EndPage | 7322 |
ExternalDocumentID | 9010659 |
Genre | orig-research |
GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i203t-504d316a711b45cd56941108b9f08d6c9e80c9b3a35ad672416eb8ddcf426a2c3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:38:48 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-504d316a711b45cd56941108b9f08d6c9e80c9b3a35ad672416eb8ddcf426a2c3 |
PageCount | 10 |
ParticipantIDs | ieee_primary_9010659 |
PublicationCentury | 2000 |
PublicationDate | 2019-Oct. |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-Oct. |
PublicationDecade | 2010 |
PublicationTitle | Proceedings / IEEE International Conference on Computer Vision |
PublicationTitleAbbrev | ICCV |
PublicationYear | 2019 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0039286 |
Score | 2.6275332 |
Snippet | We propose an end-to-end trainable Convolutional Neural Network (CNN), named GridDehazeNet, for single image dehazing. The GridDehazeNet consists of three... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 7313 |
SubjectTerms | Atmospheric modeling Data models Estimation Image color analysis Image restoration Scattering |
Title | GridDehazeNet: Attention-Based Multi-Scale Network for Image Dehazing |
URI | https://ieeexplore.ieee.org/document/9010659 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEG2QkydUMH6nB48W2u22bL0pgmACMVEMN7Jtp5EYweBy4dfb7i5ojAdvTZN-pJP2Tdv3ZhC6hIgqm6ScSCMkibXjJGWRIwysdUZJ53QQCg9Hsj-OHyZiUkFXWy0MAOTkM2iGYv6XbxdmFZ7KWoFKIIXaQTv-4lZotTanrof5RJahexhVrUGn8xKIWyEaZTuke_-ROyWHjl4NDTeDFoyRt-Yq002z_hWP8b-z2kONb5EeftzCzz6qwPwA1UqvEpd79rOOuvfLmb2D13QNI8iu8U2WFRRHcusRzOJcgkuevK0AjwpSOPaeLB68-6MG5w19_w007nWfO31SJk8gs4jyjAgaW85k2mZMx8JYERSrjCZaOZpYaRQk1CjNUy5SK9seyCXoxFrjPGankeGHqDpfzOEIYSFjaDsmday49--UDi2iKOSiEnFE3TGqh1WZfhTxMablgpz8XX2KdoNdCkLcGapmyxWce2DP9EVu0S_PLKOA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4QD3pCBePbHjxaaLfb7tabIgoKxEQw3Mj2FYkRDC4Xfr3t7oLGePDWNOkjnXS-Sft9MwBcmAALHScUccU4CqWlKCGBRcRobZXg1kovFO71eXsYPozYqAQu11oYY0xGPjN138z-8vVMLfxTWcNTCTgTG2CTeTFurtZa-V0H9DEvkvcQLBqdZvPFU7d8PsrIF3z_UT0lA4-7Cuitls05I2_1RSrravkrI-N_97UDat8yPfi0BqBdUDLTPVAp4kpY3NrPKmjdzyf61rwmS9M36RW8TtOc5IhuHIZpmIlw0bOzloH9nBYOXSwLO-_O2cBsoJu_BoZ3rUGzjYryCWgSYJoihkNNCU8iQmTIlGZes0pwLIXFseZKmBgrIWlCWaJ55KCcGxlrraxD7SRQdB-Up7OpOQCQ8dBElnAZCuoiPCH9iCDw1ahYGGB7CKr-VMYfeYaMcXEgR393n4Ot9qDXHXc7_cdjsO1tlNPjTkA5nS_MqYP5VJ5l1v0Ch_ymyA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Conference+on+Computer+Vision&rft.atitle=GridDehazeNet%3A+Attention-Based+Multi-Scale+Network+for+Image+Dehazing&rft.au=Liu%2C+Xiaohong&rft.au=Ma%2C+Yongrui&rft.au=Shi%2C+Zhihao&rft.au=Chen%2C+Jun&rft.date=2019-10-01&rft.pub=IEEE&rft.eissn=2380-7504&rft.spage=7313&rft.epage=7322&rft_id=info:doi/10.1109%2FICCV.2019.00741&rft.externalDocID=9010659 |