GridDehazeNet: Attention-Based Multi-Scale Network for Image Dehazing

We propose an end-to-end trainable Convolutional Neural Network (CNN), named GridDehazeNet, for single image dehazing. The GridDehazeNet consists of three modules: pre-processing, backbone, and post-processing. The trainable pre-processing module can generate learned inputs with better diversity and...

Full description

Saved in:
Bibliographic Details
Published inProceedings / IEEE International Conference on Computer Vision pp. 7313 - 7322
Main Authors Liu, Xiaohong, Ma, Yongrui, Shi, Zhihao, Chen, Jun
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2019
Subjects
Online AccessGet full text
ISSN2380-7504
DOI10.1109/ICCV.2019.00741

Cover

Loading…
Abstract We propose an end-to-end trainable Convolutional Neural Network (CNN), named GridDehazeNet, for single image dehazing. The GridDehazeNet consists of three modules: pre-processing, backbone, and post-processing. The trainable pre-processing module can generate learned inputs with better diversity and more pertinent features as compared to those derived inputs produced by hand-selected pre-processing methods. The backbone module implements a novel attention-based multi-scale estimation on a grid network, which can effectively alleviate the bottleneck issue often encountered in the conventional multi-scale approach. The post-processing module helps to reduce the artifacts in the final output. Experimental results indicate that the GridDehazeNet outperforms the state-of-the-arts on both synthetic and real-world images. The proposed hazing method does not rely on the atmosphere scattering model, and we provide an explanation as to why it is not necessarily beneficial to take advantage of the dimension reduction offered by the atmosphere scattering model for image dehazing, even if only the dehazing results on synthetic images are concerned.
AbstractList We propose an end-to-end trainable Convolutional Neural Network (CNN), named GridDehazeNet, for single image dehazing. The GridDehazeNet consists of three modules: pre-processing, backbone, and post-processing. The trainable pre-processing module can generate learned inputs with better diversity and more pertinent features as compared to those derived inputs produced by hand-selected pre-processing methods. The backbone module implements a novel attention-based multi-scale estimation on a grid network, which can effectively alleviate the bottleneck issue often encountered in the conventional multi-scale approach. The post-processing module helps to reduce the artifacts in the final output. Experimental results indicate that the GridDehazeNet outperforms the state-of-the-arts on both synthetic and real-world images. The proposed hazing method does not rely on the atmosphere scattering model, and we provide an explanation as to why it is not necessarily beneficial to take advantage of the dimension reduction offered by the atmosphere scattering model for image dehazing, even if only the dehazing results on synthetic images are concerned.
Author Chen, Jun
Shi, Zhihao
Liu, Xiaohong
Ma, Yongrui
Author_xml – sequence: 1
  givenname: Xiaohong
  surname: Liu
  fullname: Liu, Xiaohong
  organization: McMaster University
– sequence: 2
  givenname: Yongrui
  surname: Ma
  fullname: Ma, Yongrui
  organization: McMaster University
– sequence: 3
  givenname: Zhihao
  surname: Shi
  fullname: Shi, Zhihao
  organization: McMaster University
– sequence: 4
  givenname: Jun
  surname: Chen
  fullname: Chen, Jun
  organization: McMaster University
BookMark eNotjstOwzAURA0CibZ0zYJNfsDh-hHHZlfSUiIVWPDYVo59UwxpghIjBF9PBKxmM2fOTMlR27VIyBmDlDEwF2VRPKccmEkBcskOyNzkmuVcM6lB6EMy4UIDzTOQJ2Q6DK8AwnCtJmS17oNf4ov9xjuMl8kiRmxj6Fp6ZQf0ye1HEwN9cLbBZCx8dv1bUnd9Uu7tDpNfMLS7U3Jc22bA-X_OyNP16rG4oZv7dVksNjRwEJGOei-Ysjljlcycz5SR439dmRq0V86gBmcqYUVmvcq5ZAor7b2rJVeWOzEj53-7ARG3733Y2_5ra4CByoz4AVjLS58
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICCV.2019.00741
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781728148038
1728148030
EISSN 2380-7504
EndPage 7322
ExternalDocumentID 9010659
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-504d316a711b45cd56941108b9f08d6c9e80c9b3a35ad672416eb8ddcf426a2c3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:38:48 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-504d316a711b45cd56941108b9f08d6c9e80c9b3a35ad672416eb8ddcf426a2c3
PageCount 10
ParticipantIDs ieee_primary_9010659
PublicationCentury 2000
PublicationDate 2019-Oct.
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-Oct.
PublicationDecade 2010
PublicationTitle Proceedings / IEEE International Conference on Computer Vision
PublicationTitleAbbrev ICCV
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0039286
Score 2.6275332
Snippet We propose an end-to-end trainable Convolutional Neural Network (CNN), named GridDehazeNet, for single image dehazing. The GridDehazeNet consists of three...
SourceID ieee
SourceType Publisher
StartPage 7313
SubjectTerms Atmospheric modeling
Data models
Estimation
Image color analysis
Image restoration
Scattering
Title GridDehazeNet: Attention-Based Multi-Scale Network for Image Dehazing
URI https://ieeexplore.ieee.org/document/9010659
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEG2QkydUMH6nB48W2u22bL0pgmACMVEMN7Jtp5EYweBy4dfb7i5ojAdvTZN-pJP2Tdv3ZhC6hIgqm6ScSCMkibXjJGWRIwysdUZJ53QQCg9Hsj-OHyZiUkFXWy0MAOTkM2iGYv6XbxdmFZ7KWoFKIIXaQTv-4lZotTanrof5RJahexhVrUGn8xKIWyEaZTuke_-ROyWHjl4NDTeDFoyRt-Yq002z_hWP8b-z2kONb5EeftzCzz6qwPwA1UqvEpd79rOOuvfLmb2D13QNI8iu8U2WFRRHcusRzOJcgkuevK0AjwpSOPaeLB68-6MG5w19_w007nWfO31SJk8gs4jyjAgaW85k2mZMx8JYERSrjCZaOZpYaRQk1CjNUy5SK9seyCXoxFrjPGankeGHqDpfzOEIYSFjaDsmday49--UDi2iKOSiEnFE3TGqh1WZfhTxMablgpz8XX2KdoNdCkLcGapmyxWce2DP9EVu0S_PLKOA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4QD3pCBePbHjxaaLfb7tabIgoKxEQw3Mj2FYkRDC4Xfr3t7oLGePDWNOkjnXS-Sft9MwBcmAALHScUccU4CqWlKCGBRcRobZXg1kovFO71eXsYPozYqAQu11oYY0xGPjN138z-8vVMLfxTWcNTCTgTG2CTeTFurtZa-V0H9DEvkvcQLBqdZvPFU7d8PsrIF3z_UT0lA4-7Cuitls05I2_1RSrravkrI-N_97UDat8yPfi0BqBdUDLTPVAp4kpY3NrPKmjdzyf61rwmS9M36RW8TtOc5IhuHIZpmIlw0bOzloH9nBYOXSwLO-_O2cBsoJu_BoZ3rUGzjYryCWgSYJoihkNNCU8iQmTIlGZes0pwLIXFseZKmBgrIWlCWaJ55KCcGxlrraxD7SRQdB-Up7OpOQCQ8dBElnAZCuoiPCH9iCDw1ahYGGB7CKr-VMYfeYaMcXEgR393n4Ot9qDXHXc7_cdjsO1tlNPjTkA5nS_MqYP5VJ5l1v0Ch_ymyA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Conference+on+Computer+Vision&rft.atitle=GridDehazeNet%3A+Attention-Based+Multi-Scale+Network+for+Image+Dehazing&rft.au=Liu%2C+Xiaohong&rft.au=Ma%2C+Yongrui&rft.au=Shi%2C+Zhihao&rft.au=Chen%2C+Jun&rft.date=2019-10-01&rft.pub=IEEE&rft.eissn=2380-7504&rft.spage=7313&rft.epage=7322&rft_id=info:doi/10.1109%2FICCV.2019.00741&rft.externalDocID=9010659