Attacks Detection Approach Based on a Reinforcement Learning Process to Secure 5G Wireless Network

Fifth Generation (5G) wireless network will be a subject to a variety of cyber-threats from advanced and complex attacks. In this article, we aim to secure the 5G wireless systems from the most dangerous and advanced network attacks, e.g., jamming and Distributed Denial of Service (DDoS) attacks. We...

Full description

Saved in:
Bibliographic Details
Published inIEEE/CIC International Conference on Communications in China - Workshops (Online) pp. 1 - 6
Main Author Sedjelmaci, Hichem
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2020
Subjects
Online AccessGet full text
ISSN2474-9133
DOI10.1109/ICCWorkshops49005.2020.9145438

Cover

Loading…
Abstract Fifth Generation (5G) wireless network will be a subject to a variety of cyber-threats from advanced and complex attacks. In this article, we aim to secure the 5G wireless systems from the most dangerous and advanced network attacks, e.g., jamming and Distributed Denial of Service (DDoS) attacks. We propose and develop a new cooperative attack detection based on a hierarchical Reinforcement Learning (RL) process to identify the network attacks. The cooperative detection is performed with a distributed detection systems executed at the different critical 5G network's organs such as access point, base station and servers. According to our experiments results, the proposed RL detection system enhances a detection of new misbehaviors attacks.
AbstractList Fifth Generation (5G) wireless network will be a subject to a variety of cyber-threats from advanced and complex attacks. In this article, we aim to secure the 5G wireless systems from the most dangerous and advanced network attacks, e.g., jamming and Distributed Denial of Service (DDoS) attacks. We propose and develop a new cooperative attack detection based on a hierarchical Reinforcement Learning (RL) process to identify the network attacks. The cooperative detection is performed with a distributed detection systems executed at the different critical 5G network's organs such as access point, base station and servers. According to our experiments results, the proposed RL detection system enhances a detection of new misbehaviors attacks.
Author Sedjelmaci, Hichem
Author_xml – sequence: 1
  givenname: Hichem
  surname: Sedjelmaci
  fullname: Sedjelmaci, Hichem
  organization: Orange Labs, 44 Avenue de la République, 92320 Châtillon, France
BookMark eNotkM1KAzEYRaMoWGufwE1W7qZ--Zlmsqyj1kJR8YcuSybzjY1tkyGJiG9vxS4uF87icLnn5MQHj4RcMRgzBvp6XtfLEDdpHfokNUA55sBhrJkspaiOyEiriim-j5TAj8mASyULzYQ4I6OUPgFAcMaUYAPSTHM2dpPoLWa02QVPp30fg7FremMStnRPDH1B57sQLe7QZ7pAE73zH_Q5Bosp0RzoK9qviLSc0aWLuP2jj5i_9zsvyGlntglHhx6S9_u7t_qhWDzN5vV0UTgOIhfSMtZNdKlkAxNopbYcFFaqkVKXqJitqoa3nHe8KyeITJRGd4it0pXBRrdiSC7_vQ4RV310OxN_VodXxC_iG1wx
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCWorkshops49005.2020.9145438
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781728174402
1728174406
EISSN 2474-9133
EndPage 6
ExternalDocumentID 9145438
Genre orig-research
GroupedDBID 6IE
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i203t-4c11f69574b060d49c207e87b4495e71c88b2d22f2f56ee135a9feed798aeb9d3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:30:02 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-4c11f69574b060d49c207e87b4495e71c88b2d22f2f56ee135a9feed798aeb9d3
PageCount 6
ParticipantIDs ieee_primary_9145438
PublicationCentury 2000
PublicationDate 2020-June
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-June
PublicationDecade 2020
PublicationTitle IEEE/CIC International Conference on Communications in China - Workshops (Online)
PublicationTitleAbbrev ICCW
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211731
Score 1.740371
Snippet Fifth Generation (5G) wireless network will be a subject to a variety of cyber-threats from advanced and complex attacks. In this article, we aim to secure the...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms 5G mobile communication
5G wireless network
Computer architecture
Computer crime
Jamming
Machine learning algorithms
Monitoring
Network attacks detection
Reinforcement learning
Wireless networks
Title Attacks Detection Approach Based on a Reinforcement Learning Process to Secure 5G Wireless Network
URI https://ieeexplore.ieee.org/document/9145438
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELXaDggWPlrEtzwgJpLGjhPHYymUgtQKISp1q5z4AgiUVNRd-PXYTigfYmCLLlHi-BSd7-W9Z4ROucyTkJDcM2sD06CYb8ITkVSeFIFSkucMnChsNI6HE3Y7jaYNdL7SwgCAI5-Bbw_dv3xVZksLlXUFYRELkyZqmsat0mqt8BTzKMJDsobOahvN7k2_bwHnxVM5XzBhwRPT6Ad-fZMfu6m4YjLYRKPPYVQckhd_qVM_e__l0PjfcW6hzpdsD9-tCtI2akCxgza-OQ62UdrT2qrq8SVoR8IqcK92FccXpqApbCIS34MzVM0cdohrD9ZHXKsKsC6xw-kBR9fY8mdfbXRcMco7aDK4eugPvXqbBe-ZBqH2WGZyFYuIszSIA8VERgMOCU-ZaZ6AkyxJUqoozWkexQAkjKTIzZtwkUhIhQp3UasoC9hDODRn8kTRlIKpjsCkbXgoBJm5lBFF9lHbztZsXjlpzOqJOvg7fIjWbcYqYtYRaum3JRybJYBOT1zuPwB1yrGo
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2VIrFcWApixwfEibSx4yw-lkJpoa0QaqXeqiSeAAIlFU0vfD22E8oiDtyiSZQ4dqLxPL_3DHDmh0ngUJpYam6gChT1T1jCDaUVClvK0E84GlFYf-B1Rvx27I4rcLHQwiCiIZ9hXR-atXyZxXMNlTUE5S53giVYVnnfpYVaa4GoqIdR36ErcF4aaTa6rZaGnGdP2XTGhYZPVKlv18vb_NhPxaST9gb0PxtSsEhe6vM8qsfvvzwa_9vSTdj5Eu6R-0VK2oIKptuw_s1zsAZRM8-1rp5cYW5oWClplr7i5FKlNElUJCQPaCxVY4MektKF9ZGUugKSZ8Qg9UjcG6IZtK86Oig45Tswal8PWx2r3GjBema2k1s8VqPlCdfnke3ZkouY2T4GfsRV-YQ-jYMgYpKxhCWuh0gdNxSJehNfBCFGQjq7UE2zFPeAOOpMEkgWMVT5EXmoSx6Gdqwu5VTSfajp3ppMCy-NSdlRB3-HT2G1M-z3Jr3u4O4Q1vToFTStI6jmb3M8VhOCPDox38EH5-G08Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE%2FCIC+International+Conference+on+Communications+in+China+-+Workshops+%28Online%29&rft.atitle=Attacks+Detection+Approach+Based+on+a+Reinforcement+Learning+Process+to+Secure+5G+Wireless+Network&rft.au=Sedjelmaci%2C+Hichem&rft.date=2020-06-01&rft.pub=IEEE&rft.eissn=2474-9133&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICCWorkshops49005.2020.9145438&rft.externalDocID=9145438