Attacks Detection Approach Based on a Reinforcement Learning Process to Secure 5G Wireless Network
Fifth Generation (5G) wireless network will be a subject to a variety of cyber-threats from advanced and complex attacks. In this article, we aim to secure the 5G wireless systems from the most dangerous and advanced network attacks, e.g., jamming and Distributed Denial of Service (DDoS) attacks. We...
Saved in:
Published in | IEEE/CIC International Conference on Communications in China - Workshops (Online) pp. 1 - 6 |
---|---|
Main Author | |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2474-9133 |
DOI | 10.1109/ICCWorkshops49005.2020.9145438 |
Cover
Loading…
Abstract | Fifth Generation (5G) wireless network will be a subject to a variety of cyber-threats from advanced and complex attacks. In this article, we aim to secure the 5G wireless systems from the most dangerous and advanced network attacks, e.g., jamming and Distributed Denial of Service (DDoS) attacks. We propose and develop a new cooperative attack detection based on a hierarchical Reinforcement Learning (RL) process to identify the network attacks. The cooperative detection is performed with a distributed detection systems executed at the different critical 5G network's organs such as access point, base station and servers. According to our experiments results, the proposed RL detection system enhances a detection of new misbehaviors attacks. |
---|---|
AbstractList | Fifth Generation (5G) wireless network will be a subject to a variety of cyber-threats from advanced and complex attacks. In this article, we aim to secure the 5G wireless systems from the most dangerous and advanced network attacks, e.g., jamming and Distributed Denial of Service (DDoS) attacks. We propose and develop a new cooperative attack detection based on a hierarchical Reinforcement Learning (RL) process to identify the network attacks. The cooperative detection is performed with a distributed detection systems executed at the different critical 5G network's organs such as access point, base station and servers. According to our experiments results, the proposed RL detection system enhances a detection of new misbehaviors attacks. |
Author | Sedjelmaci, Hichem |
Author_xml | – sequence: 1 givenname: Hichem surname: Sedjelmaci fullname: Sedjelmaci, Hichem organization: Orange Labs, 44 Avenue de la République, 92320 Châtillon, France |
BookMark | eNotkM1KAzEYRaMoWGufwE1W7qZ--Zlmsqyj1kJR8YcuSybzjY1tkyGJiG9vxS4uF87icLnn5MQHj4RcMRgzBvp6XtfLEDdpHfokNUA55sBhrJkspaiOyEiriim-j5TAj8mASyULzYQ4I6OUPgFAcMaUYAPSTHM2dpPoLWa02QVPp30fg7FremMStnRPDH1B57sQLe7QZ7pAE73zH_Q5Bosp0RzoK9qviLSc0aWLuP2jj5i_9zsvyGlntglHhx6S9_u7t_qhWDzN5vV0UTgOIhfSMtZNdKlkAxNopbYcFFaqkVKXqJitqoa3nHe8KyeITJRGd4it0pXBRrdiSC7_vQ4RV310OxN_VodXxC_iG1wx |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICCWorkshops49005.2020.9145438 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9781728174402 1728174406 |
EISSN | 2474-9133 |
EndPage | 6 |
ExternalDocumentID | 9145438 |
Genre | orig-research |
GroupedDBID | 6IE 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i203t-4c11f69574b060d49c207e87b4495e71c88b2d22f2f56ee135a9feed798aeb9d3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:30:02 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-4c11f69574b060d49c207e87b4495e71c88b2d22f2f56ee135a9feed798aeb9d3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_9145438 |
PublicationCentury | 2000 |
PublicationDate | 2020-June |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-June |
PublicationDecade | 2020 |
PublicationTitle | IEEE/CIC International Conference on Communications in China - Workshops (Online) |
PublicationTitleAbbrev | ICCW |
PublicationYear | 2020 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003211731 |
Score | 1.740371 |
Snippet | Fifth Generation (5G) wireless network will be a subject to a variety of cyber-threats from advanced and complex attacks. In this article, we aim to secure the... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | 5G mobile communication 5G wireless network Computer architecture Computer crime Jamming Machine learning algorithms Monitoring Network attacks detection Reinforcement learning Wireless networks |
Title | Attacks Detection Approach Based on a Reinforcement Learning Process to Secure 5G Wireless Network |
URI | https://ieeexplore.ieee.org/document/9145438 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELXaDggWPlrEtzwgJpLGjhPHYymUgtQKISp1q5z4AgiUVNRd-PXYTigfYmCLLlHi-BSd7-W9Z4ROucyTkJDcM2sD06CYb8ITkVSeFIFSkucMnChsNI6HE3Y7jaYNdL7SwgCAI5-Bbw_dv3xVZksLlXUFYRELkyZqmsat0mqt8BTzKMJDsobOahvN7k2_bwHnxVM5XzBhwRPT6Ad-fZMfu6m4YjLYRKPPYVQckhd_qVM_e__l0PjfcW6hzpdsD9-tCtI2akCxgza-OQ62UdrT2qrq8SVoR8IqcK92FccXpqApbCIS34MzVM0cdohrD9ZHXKsKsC6xw-kBR9fY8mdfbXRcMco7aDK4eugPvXqbBe-ZBqH2WGZyFYuIszSIA8VERgMOCU-ZaZ6AkyxJUqoozWkexQAkjKTIzZtwkUhIhQp3UasoC9hDODRn8kTRlIKpjsCkbXgoBJm5lBFF9lHbztZsXjlpzOqJOvg7fIjWbcYqYtYRaum3JRybJYBOT1zuPwB1yrGo |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2VIrFcWApixwfEibSx4yw-lkJpoa0QaqXeqiSeAAIlFU0vfD22E8oiDtyiSZQ4dqLxPL_3DHDmh0ngUJpYam6gChT1T1jCDaUVClvK0E84GlFYf-B1Rvx27I4rcLHQwiCiIZ9hXR-atXyZxXMNlTUE5S53giVYVnnfpYVaa4GoqIdR36ErcF4aaTa6rZaGnGdP2XTGhYZPVKlv18vb_NhPxaST9gb0PxtSsEhe6vM8qsfvvzwa_9vSTdj5Eu6R-0VK2oIKptuw_s1zsAZRM8-1rp5cYW5oWClplr7i5FKlNElUJCQPaCxVY4MektKF9ZGUugKSZ8Qg9UjcG6IZtK86Oig45Tswal8PWx2r3GjBema2k1s8VqPlCdfnke3ZkouY2T4GfsRV-YQ-jYMgYpKxhCWuh0gdNxSJehNfBCFGQjq7UE2zFPeAOOpMEkgWMVT5EXmoSx6Gdqwu5VTSfajp3ppMCy-NSdlRB3-HT2G1M-z3Jr3u4O4Q1vToFTStI6jmb3M8VhOCPDox38EH5-G08Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE%2FCIC+International+Conference+on+Communications+in+China+-+Workshops+%28Online%29&rft.atitle=Attacks+Detection+Approach+Based+on+a+Reinforcement+Learning+Process+to+Secure+5G+Wireless+Network&rft.au=Sedjelmaci%2C+Hichem&rft.date=2020-06-01&rft.pub=IEEE&rft.eissn=2474-9133&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICCWorkshops49005.2020.9145438&rft.externalDocID=9145438 |