Physics Informed Deep Learning for Traffic State Estimation
The challenge of traffic state estimation (TSE) lies in the sparsity of observed traffic data and the sensor noise present in the data. This paper presents a new approach - physics informed deep learning (PIDL) method - to tackle this problem. PIDL equips a deep learning neural network with the stre...
Saved in:
Published in | 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) pp. 1 - 6 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
20.09.2020
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ITSC45102.2020.9294236 |
Cover
Abstract | The challenge of traffic state estimation (TSE) lies in the sparsity of observed traffic data and the sensor noise present in the data. This paper presents a new approach - physics informed deep learning (PIDL) method - to tackle this problem. PIDL equips a deep learning neural network with the strength of the physical law governing traffic flow to better estimate traffic conditions. A case study is conducted where the accuracy and convergence-time of the algorithm are tested for varying levels of scarcely observed traffic density data - both in Lagrangian and Eulerian frames. The estimation results are encouraging and demonstrate the capability of PIDL in making accurate and prompt estimation of traffic states. |
---|---|
AbstractList | The challenge of traffic state estimation (TSE) lies in the sparsity of observed traffic data and the sensor noise present in the data. This paper presents a new approach - physics informed deep learning (PIDL) method - to tackle this problem. PIDL equips a deep learning neural network with the strength of the physical law governing traffic flow to better estimate traffic conditions. A case study is conducted where the accuracy and convergence-time of the algorithm are tested for varying levels of scarcely observed traffic density data - both in Lagrangian and Eulerian frames. The estimation results are encouraging and demonstrate the capability of PIDL in making accurate and prompt estimation of traffic states. |
Author | Agarwal, Shaurya Huang, Archie J. |
Author_xml | – sequence: 1 givenname: Archie J. surname: Huang fullname: Huang, Archie J. email: archie.huang@nyu.edu organization: Civil, Environmental & Construction Engineering,Department at University of Central Florida,Orlando,FL,USA – sequence: 2 givenname: Shaurya surname: Agarwal fullname: Agarwal, Shaurya email: shaurya.agarwal@ucf.edu organization: Civil, Environmental & Construction Engineering,Department at University of Central Florida,Orlando,FL,USA |
BookMark | eNotj8FKw0AURUewC1v7BYLMDyS-mXmTZHAlsdZAQKFxXV6SNzpgJyXJpn9vwK4u3AP3cNfiNg6RhXhUkCoF7qlqDiVaBTrVoCF12qE22Y1Yq1wXChU6vBPPnz-XKXSTrKIfxhP38pX5LGumMYb4LZdSNiN5Hzp5mGlmuZvmcKI5DPFerDz9Try95kZ8ve2a8j2pP_ZV-VInQYOZE8wz1yFAx550bnoFts07Yut93rcFOVwootOZ9aR6wsIwtMZAYTMGS2YjHv53AzMfz-OiHy_H6x_zB22hRKg |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ITSC45102.2020.9294236 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISBN | 1728141494 9781728141497 |
EndPage | 6 |
ExternalDocumentID | 9294236 |
Genre | orig-research |
GroupedDBID | 6IE 6IH CBEJK RIE RIO |
ID | FETCH-LOGICAL-i203t-4769c400cefa273d105b7cae5ff7db8a94c40449265fa1da483e0b330856e05a3 |
IEDL.DBID | RIE |
IngestDate | Thu Jan 18 11:13:09 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-4769c400cefa273d105b7cae5ff7db8a94c40449265fa1da483e0b330856e05a3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_9294236 |
PublicationCentury | 2000 |
PublicationDate | 2020-Sept.-20 |
PublicationDateYYYYMMDD | 2020-09-20 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-Sept.-20 day: 20 |
PublicationDecade | 2020 |
PublicationTitle | 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) |
PublicationTitleAbbrev | ITSC |
PublicationYear | 2020 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 2.0096357 |
Snippet | The challenge of traffic state estimation (TSE) lies in the sparsity of observed traffic data and the sensor noise present in the data. This paper presents a... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Biological neural networks Deep learning Physics Physics Informed Machine Learning Real-time systems Roads Sensor Placement State estimation Traffic State Estimation Training |
Title | Physics Informed Deep Learning for Traffic State Estimation |
URI | https://ieeexplore.ieee.org/document/9294236 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEB3aguDJj1b8Zg8eTbrJbrIJHmtLFSqCLfRW9mMiIrRF04u_3tkkVhQP3pZNYJPszL5Hdt5bgCvrisjR4hso4gqB1AUGxJsplpPMiDS1AiOvHZ48pOOZvJ8n8xZcb7UwiFgVn2Hom9VevlvZjf9V1icoJ_RP29CmMKu1Wo3oN-J5_276NJAUYl5eFfOwufnHqSkVaIz2YPI1XF0r8hpuShPaj19OjP99nn3ofcvz2OMWeA6ghctD2KlqOe17F26aFqulRujYLeKaNU6qz4w6GUGU945gFddkQ8rzWsLYg9loOB2Mg-aMhOAl5qIMpEpzS3losdDERBzRJaOsxqQolDOZziVdld4VMCl05LTMBHIjBDGtFHmixRF0lqslHgNTcSF1rhXPXC4x51royOZGUZI6rVx2Al3_CRbr2gZj0bz96d_dZ7Drp8GXVsT8HDrl2wYvCL9Lc1lN3CcKc5vH |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH7MiejJH5v42xw82i5t0qbF43Rsug3BDXYbafIqImxDt4t_vS9tnSgevIU0kDbJy_fRvO8LwJWxeWBp8_UUcQVP6hw94s20lqMkE3FsBAZOOzwYxt2xvJ9Ekxpcr7UwiFgkn6HvisVZvp2blftV1iIoJ_SPN2CTcF9GpVqrkv0GPG31Rk9tSYvMCaxC7lfNf9ybUsBGZxcGXx2W2SKv_mqZ-ebjlxfjf99oD5rfAj32uIaefajh7AC2imxO896Am6rESrERWnaLuGCVl-ozo0pGIOXcI1jBNtkdRXopYmzCuHM3ane96pYE7yXkYulJFaeGItFgromLWCJMmTIaozxXNkt0KumpdL6AUa4Dq2UikGdCENeKkUdaHEJ9Np_hETAV5lKnWvHEphJTroUOTJopClOrlU2OoeGGYLoojTCm1def_F19Cdvd0aA_7feGD6ew46bEJVqE_Azqy7cVnhOaL7OLYhI_AWU_nxQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+IEEE+23rd+International+Conference+on+Intelligent+Transportation+Systems+%28ITSC%29&rft.atitle=Physics+Informed+Deep+Learning+for+Traffic+State+Estimation&rft.au=Huang%2C+Archie+J.&rft.au=Agarwal%2C+Shaurya&rft.date=2020-09-20&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FITSC45102.2020.9294236&rft.externalDocID=9294236 |