Physics Informed Deep Learning for Traffic State Estimation

The challenge of traffic state estimation (TSE) lies in the sparsity of observed traffic data and the sensor noise present in the data. This paper presents a new approach - physics informed deep learning (PIDL) method - to tackle this problem. PIDL equips a deep learning neural network with the stre...

Full description

Saved in:
Bibliographic Details
Published in2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) pp. 1 - 6
Main Authors Huang, Archie J., Agarwal, Shaurya
Format Conference Proceeding
LanguageEnglish
Published IEEE 20.09.2020
Subjects
Online AccessGet full text
DOI10.1109/ITSC45102.2020.9294236

Cover

Abstract The challenge of traffic state estimation (TSE) lies in the sparsity of observed traffic data and the sensor noise present in the data. This paper presents a new approach - physics informed deep learning (PIDL) method - to tackle this problem. PIDL equips a deep learning neural network with the strength of the physical law governing traffic flow to better estimate traffic conditions. A case study is conducted where the accuracy and convergence-time of the algorithm are tested for varying levels of scarcely observed traffic density data - both in Lagrangian and Eulerian frames. The estimation results are encouraging and demonstrate the capability of PIDL in making accurate and prompt estimation of traffic states.
AbstractList The challenge of traffic state estimation (TSE) lies in the sparsity of observed traffic data and the sensor noise present in the data. This paper presents a new approach - physics informed deep learning (PIDL) method - to tackle this problem. PIDL equips a deep learning neural network with the strength of the physical law governing traffic flow to better estimate traffic conditions. A case study is conducted where the accuracy and convergence-time of the algorithm are tested for varying levels of scarcely observed traffic density data - both in Lagrangian and Eulerian frames. The estimation results are encouraging and demonstrate the capability of PIDL in making accurate and prompt estimation of traffic states.
Author Agarwal, Shaurya
Huang, Archie J.
Author_xml – sequence: 1
  givenname: Archie J.
  surname: Huang
  fullname: Huang, Archie J.
  email: archie.huang@nyu.edu
  organization: Civil, Environmental & Construction Engineering,Department at University of Central Florida,Orlando,FL,USA
– sequence: 2
  givenname: Shaurya
  surname: Agarwal
  fullname: Agarwal, Shaurya
  email: shaurya.agarwal@ucf.edu
  organization: Civil, Environmental & Construction Engineering,Department at University of Central Florida,Orlando,FL,USA
BookMark eNotj8FKw0AURUewC1v7BYLMDyS-mXmTZHAlsdZAQKFxXV6SNzpgJyXJpn9vwK4u3AP3cNfiNg6RhXhUkCoF7qlqDiVaBTrVoCF12qE22Y1Yq1wXChU6vBPPnz-XKXSTrKIfxhP38pX5LGumMYb4LZdSNiN5Hzp5mGlmuZvmcKI5DPFerDz9Try95kZ8ve2a8j2pP_ZV-VInQYOZE8wz1yFAx550bnoFts07Yut93rcFOVwootOZ9aR6wsIwtMZAYTMGS2YjHv53AzMfz-OiHy_H6x_zB22hRKg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ITSC45102.2020.9294236
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISBN 1728141494
9781728141497
EndPage 6
ExternalDocumentID 9294236
Genre orig-research
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i203t-4769c400cefa273d105b7cae5ff7db8a94c40449265fa1da483e0b330856e05a3
IEDL.DBID RIE
IngestDate Thu Jan 18 11:13:09 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-4769c400cefa273d105b7cae5ff7db8a94c40449265fa1da483e0b330856e05a3
PageCount 6
ParticipantIDs ieee_primary_9294236
PublicationCentury 2000
PublicationDate 2020-Sept.-20
PublicationDateYYYYMMDD 2020-09-20
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-Sept.-20
  day: 20
PublicationDecade 2020
PublicationTitle 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)
PublicationTitleAbbrev ITSC
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.0096357
Snippet The challenge of traffic state estimation (TSE) lies in the sparsity of observed traffic data and the sensor noise present in the data. This paper presents a...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Biological neural networks
Deep learning
Physics
Physics Informed Machine Learning
Real-time systems
Roads
Sensor Placement
State estimation
Traffic State Estimation
Training
Title Physics Informed Deep Learning for Traffic State Estimation
URI https://ieeexplore.ieee.org/document/9294236
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEB3aguDJj1b8Zg8eTbrJbrIJHmtLFSqCLfRW9mMiIrRF04u_3tkkVhQP3pZNYJPszL5Hdt5bgCvrisjR4hso4gqB1AUGxJsplpPMiDS1AiOvHZ48pOOZvJ8n8xZcb7UwiFgVn2Hom9VevlvZjf9V1icoJ_RP29CmMKu1Wo3oN-J5_276NJAUYl5eFfOwufnHqSkVaIz2YPI1XF0r8hpuShPaj19OjP99nn3ofcvz2OMWeA6ghctD2KlqOe17F26aFqulRujYLeKaNU6qz4w6GUGU945gFddkQ8rzWsLYg9loOB2Mg-aMhOAl5qIMpEpzS3losdDERBzRJaOsxqQolDOZziVdld4VMCl05LTMBHIjBDGtFHmixRF0lqslHgNTcSF1rhXPXC4x51royOZGUZI6rVx2Al3_CRbr2gZj0bz96d_dZ7Drp8GXVsT8HDrl2wYvCL9Lc1lN3CcKc5vH
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH7MiejJH5v42xw82i5t0qbF43Rsug3BDXYbafIqImxDt4t_vS9tnSgevIU0kDbJy_fRvO8LwJWxeWBp8_UUcQVP6hw94s20lqMkE3FsBAZOOzwYxt2xvJ9Ekxpcr7UwiFgkn6HvisVZvp2blftV1iIoJ_SPN2CTcF9GpVqrkv0GPG31Rk9tSYvMCaxC7lfNf9ybUsBGZxcGXx2W2SKv_mqZ-ebjlxfjf99oD5rfAj32uIaefajh7AC2imxO896Am6rESrERWnaLuGCVl-ozo0pGIOXcI1jBNtkdRXopYmzCuHM3ane96pYE7yXkYulJFaeGItFgromLWCJMmTIaozxXNkt0KumpdL6AUa4Dq2UikGdCENeKkUdaHEJ9Np_hETAV5lKnWvHEphJTroUOTJopClOrlU2OoeGGYLoojTCm1def_F19Cdvd0aA_7feGD6ew46bEJVqE_Azqy7cVnhOaL7OLYhI_AWU_nxQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+IEEE+23rd+International+Conference+on+Intelligent+Transportation+Systems+%28ITSC%29&rft.atitle=Physics+Informed+Deep+Learning+for+Traffic+State+Estimation&rft.au=Huang%2C+Archie+J.&rft.au=Agarwal%2C+Shaurya&rft.date=2020-09-20&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FITSC45102.2020.9294236&rft.externalDocID=9294236