Domain Generalized Few-Shot Image Classification via Meta Regularization Network

In few-shot image classification scenarios, meta-learning methods aim to learn transferable feature representations extracted from seen domains (base classes) in the meta-training phase and quickly adapt to unseen domains (novel classes) in the meta-testing phase. However, when seen and unseen domai...

Full description

Saved in:
Bibliographic Details
Published inICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) pp. 3748 - 3752
Main Authors Zhang, Min, Huang, Siteng, Wang, Donglin
Format Conference Proceeding
LanguageEnglish
Published IEEE 23.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In few-shot image classification scenarios, meta-learning methods aim to learn transferable feature representations extracted from seen domains (base classes) in the meta-training phase and quickly adapt to unseen domains (novel classes) in the meta-testing phase. However, when seen and unseen domains have a large discrepancy, existing approaches do not perform well due to the incapability of generalizing to unseen domains. In this paper, we investigate the challenging domain generalized few-shot image classification problem. We design an Meta Regularization Network (MRN) to learn a domain-invariant discriminative feature space, where a learning to learn update strategy is used to simulate domain shifts caused by seen and unseen domains. The simulation trains the model to learn to reorganize the feature knowledge acquired from seen domains to represent unseen domains. Extensive experiments and analysis show that our proposed MRN can significantly improve the generalization ability of various meta-learning methods to achieve state-of-the-art performance in domain generalized few-shot learning.
AbstractList In few-shot image classification scenarios, meta-learning methods aim to learn transferable feature representations extracted from seen domains (base classes) in the meta-training phase and quickly adapt to unseen domains (novel classes) in the meta-testing phase. However, when seen and unseen domains have a large discrepancy, existing approaches do not perform well due to the incapability of generalizing to unseen domains. In this paper, we investigate the challenging domain generalized few-shot image classification problem. We design an Meta Regularization Network (MRN) to learn a domain-invariant discriminative feature space, where a learning to learn update strategy is used to simulate domain shifts caused by seen and unseen domains. The simulation trains the model to learn to reorganize the feature knowledge acquired from seen domains to represent unseen domains. Extensive experiments and analysis show that our proposed MRN can significantly improve the generalization ability of various meta-learning methods to achieve state-of-the-art performance in domain generalized few-shot learning.
Author Huang, Siteng
Wang, Donglin
Zhang, Min
Author_xml – sequence: 1
  givenname: Min
  surname: Zhang
  fullname: Zhang, Min
  organization: Zhejiang University,College of Information Science & Electronic Engineering,Hangzhou,China
– sequence: 2
  givenname: Siteng
  surname: Huang
  fullname: Huang, Siteng
  organization: Westlake University,School of Engineering,Hangzhou,China
– sequence: 3
  givenname: Donglin
  surname: Wang
  fullname: Wang, Donglin
  organization: Westlake University,School of Engineering,Hangzhou,China
BookMark eNotj91Kw0AUhFdRsKk-gTf7Aqln_7uXUm0tVC1Gwbtysjmpq2kiSbTYp7fQwjAD38Uwk7CzuqmJMS5gJAT4m_nkNsuWWnkpRxL25p12VsIJS4S1RsNe9pQNpHI-FR7eL1jSdZ8AMHZ6PGDLu2aDseYzqqnFKu6o4FPaptlH0_P5BtfEJxV2XSxjwD42Nf-NyB-pR_5C658K27g78Cfqt037dcnOS6w6ujrmkL1N718nD-niebYfu0ijBNWn2hToXR5A50bloIxARSSlto4MulAEoay2ZmzzUGIuoQzSuwDKBmeNcmrIrg-9kYhW323cYPu3Or5X_4P8Uec
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP43922.2022.9747620
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1665405406
9781665405409
EISSN 2379-190X
EndPage 3752
ExternalDocumentID 9747620
Genre orig-research
GroupedDBID 23M
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
JC5
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-45da97bc04b53b0351a3ee22467e5a7cdc13646586bcfab20fc297c036c765373
IEDL.DBID RIE
IngestDate Wed Jun 26 19:25:26 EDT 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-45da97bc04b53b0351a3ee22467e5a7cdc13646586bcfab20fc297c036c765373
PageCount 5
ParticipantIDs ieee_primary_9747620
PublicationCentury 2000
PublicationDate 2022-May-23
PublicationDateYYYYMMDD 2022-05-23
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-May-23
  day: 23
PublicationDecade 2020
PublicationTitle ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
PublicationTitleAbbrev ICASSP
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008748
Score 2.3244984
Snippet In few-shot image classification scenarios, meta-learning methods aim to learn transferable feature representations extracted from seen domains (base classes)...
SourceID ieee
SourceType Publisher
StartPage 3748
SubjectTerms Acoustics
Conferences
Domain Generalization
Feature extraction
Few-shot Learning
Image classification
Meta Learning
Meta Regularization Network
Signal processing
Speech processing
Title Domain Generalized Few-Shot Image Classification via Meta Regularization Network
URI https://ieeexplore.ieee.org/document/9747620
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1da8IwFA3Op-1lHzr2TR72uGqWNknzONxEB4rMCb5Jkt4yGbZD6gb--iVpdR_sYS-lFELDvZCT5J5zLkLXlKcJp5AEoRIQRIqIQHJNAqPtacMwAsZbKQ2GvDeJHqdsWkM3Wy0MAHjyGbTcq6_lJ7lZuauyttv7cmoP6DtCylKrtV11YxHFG6YOke1-5248Hlm0pU5tZR_V2B9NVDyGdPfRYPP3kjry2loVumXWv4wZ_zu9A9T8Uuvh0RaHDlENsiO0981osIFG9_lCzTNcmUzP15DgLnwE45e8wP2FXVOw747peEM-Vfh9rvAACoWffLP6ZSXXxMOSNt5Ek-7Dc6cXVL0UgjklYRFELFFSaEMizULtyocqBHBucgKYEiYxtyGP7HaEa5MqTUlqqBTG4psRnIUiPEb1LM_gBGHNiIllIpSEONKQKmBcGG3DrghNY36KGi42s7fSLmNWheXs78_naNflxxXkaXiB6sVyBZcW5wt95RP8CZ1SqKQ
link.rule.ids 310,311,783,787,792,793,799,23944,23945,25154,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA1jPqgvfmzit3nw0W4xbZL2UaZj03UMt8HeRpLeYpGtMjqF_XqTtpsf-OBLKYXQci_k3PSecy5C15THEacQOa4U4HiSCCfgijhamdOGZgR0bqUU9nln7D1O2KSCbjZaGADIyWfQsLd5Lz9K9dL-Kmva2pdTc0DfYrauKNRam33XF56_5uqQoNlt3Q2HA4O31OqtzKVc_WOMSo4i7T0Urt9fkEdeG8tMNfTqlzXjfz9wH9W_9Hp4sEGiA1SB-SHa_WY1WEOD-3QmkzkubaaTFUS4DR_O8CXNcHdmdhWcz8e0zKE8Wfg9kTiETOLnfFz9ohRs4n5BHK-jcfth1Oo45TQFJ6HEzRyPRTIQShNPMVfZBqJ0AayfnAAmhY70rcs9U5BwpWOpKIk1DYQ2CKcFZ65wj1B1ns7hGGHFiPaDSMgAfE9BLIFxoZUJuyQ09vkJqtnYTN8Kw4xpGZbTvx9foe3OKOxNe93-0xnasbmy7XnqnqNqtljChUH9TF3myf4EoVmr8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=ICASSP+2022+-+2022+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%28ICASSP%29&rft.atitle=Domain+Generalized+Few-Shot+Image+Classification+via+Meta+Regularization+Network&rft.au=Zhang%2C+Min&rft.au=Huang%2C+Siteng&rft.au=Wang%2C+Donglin&rft.date=2022-05-23&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=3748&rft.epage=3752&rft_id=info:doi/10.1109%2FICASSP43922.2022.9747620&rft.externalDocID=9747620