Domain Generalized Few-Shot Image Classification via Meta Regularization Network
In few-shot image classification scenarios, meta-learning methods aim to learn transferable feature representations extracted from seen domains (base classes) in the meta-training phase and quickly adapt to unseen domains (novel classes) in the meta-testing phase. However, when seen and unseen domai...
Saved in:
Published in | ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) pp. 3748 - 3752 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
23.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In few-shot image classification scenarios, meta-learning methods aim to learn transferable feature representations extracted from seen domains (base classes) in the meta-training phase and quickly adapt to unseen domains (novel classes) in the meta-testing phase. However, when seen and unseen domains have a large discrepancy, existing approaches do not perform well due to the incapability of generalizing to unseen domains. In this paper, we investigate the challenging domain generalized few-shot image classification problem. We design an Meta Regularization Network (MRN) to learn a domain-invariant discriminative feature space, where a learning to learn update strategy is used to simulate domain shifts caused by seen and unseen domains. The simulation trains the model to learn to reorganize the feature knowledge acquired from seen domains to represent unseen domains. Extensive experiments and analysis show that our proposed MRN can significantly improve the generalization ability of various meta-learning methods to achieve state-of-the-art performance in domain generalized few-shot learning. |
---|---|
AbstractList | In few-shot image classification scenarios, meta-learning methods aim to learn transferable feature representations extracted from seen domains (base classes) in the meta-training phase and quickly adapt to unseen domains (novel classes) in the meta-testing phase. However, when seen and unseen domains have a large discrepancy, existing approaches do not perform well due to the incapability of generalizing to unseen domains. In this paper, we investigate the challenging domain generalized few-shot image classification problem. We design an Meta Regularization Network (MRN) to learn a domain-invariant discriminative feature space, where a learning to learn update strategy is used to simulate domain shifts caused by seen and unseen domains. The simulation trains the model to learn to reorganize the feature knowledge acquired from seen domains to represent unseen domains. Extensive experiments and analysis show that our proposed MRN can significantly improve the generalization ability of various meta-learning methods to achieve state-of-the-art performance in domain generalized few-shot learning. |
Author | Huang, Siteng Wang, Donglin Zhang, Min |
Author_xml | – sequence: 1 givenname: Min surname: Zhang fullname: Zhang, Min organization: Zhejiang University,College of Information Science & Electronic Engineering,Hangzhou,China – sequence: 2 givenname: Siteng surname: Huang fullname: Huang, Siteng organization: Westlake University,School of Engineering,Hangzhou,China – sequence: 3 givenname: Donglin surname: Wang fullname: Wang, Donglin organization: Westlake University,School of Engineering,Hangzhou,China |
BookMark | eNotj91Kw0AUhFdRsKk-gTf7Aqln_7uXUm0tVC1Gwbtysjmpq2kiSbTYp7fQwjAD38Uwk7CzuqmJMS5gJAT4m_nkNsuWWnkpRxL25p12VsIJS4S1RsNe9pQNpHI-FR7eL1jSdZ8AMHZ6PGDLu2aDseYzqqnFKu6o4FPaptlH0_P5BtfEJxV2XSxjwD42Nf-NyB-pR_5C658K27g78Cfqt037dcnOS6w6ujrmkL1N718nD-niebYfu0ijBNWn2hToXR5A50bloIxARSSlto4MulAEoay2ZmzzUGIuoQzSuwDKBmeNcmrIrg-9kYhW323cYPu3Or5X_4P8Uec |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICASSP43922.2022.9747620 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 1665405406 9781665405409 |
EISSN | 2379-190X |
EndPage | 3752 |
ExternalDocumentID | 9747620 |
Genre | orig-research |
GroupedDBID | 23M 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI JC5 M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i203t-45da97bc04b53b0351a3ee22467e5a7cdc13646586bcfab20fc297c036c765373 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:25:26 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-45da97bc04b53b0351a3ee22467e5a7cdc13646586bcfab20fc297c036c765373 |
PageCount | 5 |
ParticipantIDs | ieee_primary_9747620 |
PublicationCentury | 2000 |
PublicationDate | 2022-May-23 |
PublicationDateYYYYMMDD | 2022-05-23 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-May-23 day: 23 |
PublicationDecade | 2020 |
PublicationTitle | ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) |
PublicationTitleAbbrev | ICASSP |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0008748 |
Score | 2.3244984 |
Snippet | In few-shot image classification scenarios, meta-learning methods aim to learn transferable feature representations extracted from seen domains (base classes)... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 3748 |
SubjectTerms | Acoustics Conferences Domain Generalization Feature extraction Few-shot Learning Image classification Meta Learning Meta Regularization Network Signal processing Speech processing |
Title | Domain Generalized Few-Shot Image Classification via Meta Regularization Network |
URI | https://ieeexplore.ieee.org/document/9747620 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1da8IwFA3Op-1lHzr2TR72uGqWNknzONxEB4rMCb5Jkt4yGbZD6gb--iVpdR_sYS-lFELDvZCT5J5zLkLXlKcJp5AEoRIQRIqIQHJNAqPtacMwAsZbKQ2GvDeJHqdsWkM3Wy0MAHjyGbTcq6_lJ7lZuauyttv7cmoP6DtCylKrtV11YxHFG6YOke1-5248Hlm0pU5tZR_V2B9NVDyGdPfRYPP3kjry2loVumXWv4wZ_zu9A9T8Uuvh0RaHDlENsiO0981osIFG9_lCzTNcmUzP15DgLnwE45e8wP2FXVOw747peEM-Vfh9rvAACoWffLP6ZSXXxMOSNt5Ek-7Dc6cXVL0UgjklYRFELFFSaEMizULtyocqBHBucgKYEiYxtyGP7HaEa5MqTUlqqBTG4psRnIUiPEb1LM_gBGHNiIllIpSEONKQKmBcGG3DrghNY36KGi42s7fSLmNWheXs78_naNflxxXkaXiB6sVyBZcW5wt95RP8CZ1SqKQ |
link.rule.ids | 310,311,783,787,792,793,799,23944,23945,25154,27939,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA1jPqgvfmzit3nw0W4xbZL2UaZj03UMt8HeRpLeYpGtMjqF_XqTtpsf-OBLKYXQci_k3PSecy5C15THEacQOa4U4HiSCCfgijhamdOGZgR0bqUU9nln7D1O2KSCbjZaGADIyWfQsLd5Lz9K9dL-Kmva2pdTc0DfYrauKNRam33XF56_5uqQoNlt3Q2HA4O31OqtzKVc_WOMSo4i7T0Urt9fkEdeG8tMNfTqlzXjfz9wH9W_9Hp4sEGiA1SB-SHa_WY1WEOD-3QmkzkubaaTFUS4DR_O8CXNcHdmdhWcz8e0zKE8Wfg9kTiETOLnfFz9ohRs4n5BHK-jcfth1Oo45TQFJ6HEzRyPRTIQShNPMVfZBqJ0AayfnAAmhY70rcs9U5BwpWOpKIk1DYQ2CKcFZ65wj1B1ns7hGGHFiPaDSMgAfE9BLIFxoZUJuyQ09vkJqtnYTN8Kw4xpGZbTvx9foe3OKOxNe93-0xnasbmy7XnqnqNqtljChUH9TF3myf4EoVmr8Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=ICASSP+2022+-+2022+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%28ICASSP%29&rft.atitle=Domain+Generalized+Few-Shot+Image+Classification+via+Meta+Regularization+Network&rft.au=Zhang%2C+Min&rft.au=Huang%2C+Siteng&rft.au=Wang%2C+Donglin&rft.date=2022-05-23&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=3748&rft.epage=3752&rft_id=info:doi/10.1109%2FICASSP43922.2022.9747620&rft.externalDocID=9747620 |