Fast Object Inertial Parameter Identification for Collaborative Robots

Collaborative robots (cobots) are machines designed to work safely alongside people in human-centric environments. Providing cobots with the ability to quickly infer the inertial parameters of manipulated objects will improve their flexibility and enable greater usage in manufacturing and other area...

Full description

Saved in:
Bibliographic Details
Published in2022 International Conference on Robotics and Automation (ICRA) pp. 3560 - 3566
Main Authors Nadeau, Philippe, Giamou, Matthew, Kelly, Jonathan
Format Conference Proceeding
LanguageEnglish
Published IEEE 23.05.2022
Subjects
Online AccessGet full text
DOI10.1109/ICRA46639.2022.9916213

Cover

Abstract Collaborative robots (cobots) are machines designed to work safely alongside people in human-centric environments. Providing cobots with the ability to quickly infer the inertial parameters of manipulated objects will improve their flexibility and enable greater usage in manufacturing and other areas. To ensure safety, cobots are subject to kinematic limits that result in low signal-to-noise ratios (SNR) for velocity, acceleration, and force-torque data. This renders existing inertial parameter identification algorithms prohibitively slow and inaccurate. Motivated by the desire for faster model acquisition, we investigate the use of an approximation of rigid body dynamics to improve the SNR. Additionally, we introduce a mass discretization method that can make use of shape information to quickly identify plausible inertial parameters for a manipulated object. We present extensive simulation studies and real-world experiments demonstrating that our approach complements existing inertial parameter identification methods by specifically targeting the typical cobot operating regime.
AbstractList Collaborative robots (cobots) are machines designed to work safely alongside people in human-centric environments. Providing cobots with the ability to quickly infer the inertial parameters of manipulated objects will improve their flexibility and enable greater usage in manufacturing and other areas. To ensure safety, cobots are subject to kinematic limits that result in low signal-to-noise ratios (SNR) for velocity, acceleration, and force-torque data. This renders existing inertial parameter identification algorithms prohibitively slow and inaccurate. Motivated by the desire for faster model acquisition, we investigate the use of an approximation of rigid body dynamics to improve the SNR. Additionally, we introduce a mass discretization method that can make use of shape information to quickly identify plausible inertial parameters for a manipulated object. We present extensive simulation studies and real-world experiments demonstrating that our approach complements existing inertial parameter identification methods by specifically targeting the typical cobot operating regime.
Author Nadeau, Philippe
Giamou, Matthew
Kelly, Jonathan
Author_xml – sequence: 1
  givenname: Philippe
  surname: Nadeau
  fullname: Nadeau, Philippe
  email: philippe.nadeau@robotics.utias.utoronto.ca
  organization: STARS Laboratory at the University of Toronto Institute for Aerospace Studies,Toronto,Ontario,Canada
– sequence: 2
  givenname: Matthew
  surname: Giamou
  fullname: Giamou, Matthew
  email: matthew.giamou@robotics.utias.utoronto.ca
  organization: STARS Laboratory at the University of Toronto Institute for Aerospace Studies,Toronto,Ontario,Canada
– sequence: 3
  givenname: Jonathan
  surname: Kelly
  fullname: Kelly, Jonathan
  email: jonathan.kellyz@robotics.utias.utoronto.ca
  organization: STARS Laboratory at the University of Toronto Institute for Aerospace Studies,Toronto,Ontario,Canada
BookMark eNotj8FKxDAURSPoQsf5AkHyA615SUz7lkOxWhgYGWY_JOkLRDqNpEHw7y043MWBu7ic-8Bu5zQTY88gagCBL0N33GljFNZSSFkjgpGgbtgWmxYa2QKalfes7-1S-MF9kS98mCmXaCf-abO9UKHMh5HmEkP0tsQ085Ay79I0WZfy2vwQPyaXyvLI7oKdFtpeuWGn_u3UfVT7w_vQ7fZVlEKVSkstGgNjow06anEUuMoQyEZarbVzGALCKLwYlQEVAr2aNR689Xb137Cn_9lIROfvHC82_56v59Qfe7JJIw
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICRA46639.2022.9916213
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Libary (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728196817
1728196817
EndPage 3566
ExternalDocumentID 9916213
Genre orig-research
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i203t-4240761d7469be89d09172e1272a444bb9ff91d0c0d3613ffe56565c1caca213
IEDL.DBID RIE
IngestDate Wed Aug 27 02:17:55 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-4240761d7469be89d09172e1272a444bb9ff91d0c0d3613ffe56565c1caca213
PageCount 7
ParticipantIDs ieee_primary_9916213
PublicationCentury 2000
PublicationDate 2022-May-23
PublicationDateYYYYMMDD 2022-05-23
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-May-23
  day: 23
PublicationDecade 2020
PublicationTitle 2022 International Conference on Robotics and Automation (ICRA)
PublicationTitleAbbrev ICRA
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8900689
Snippet Collaborative robots (cobots) are machines designed to work safely alongside people in human-centric environments. Providing cobots with the ability to quickly...
SourceID ieee
SourceType Publisher
StartPage 3560
SubjectTerms Collaboration
Dynamics
Heuristic algorithms
Object recognition
Parameter estimation
Shape
Uncertainty
Title Fast Object Inertial Parameter Identification for Collaborative Robots
URI https://ieeexplore.ieee.org/document/9916213
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF1qT55UWvGbPXg06WazTbJHKYZWqJZSobeyH7MgSiI29eCvdyeJLYoHb2EJZL_Cezv73gwh17XZ08NiIFlmA6GlCmRi_H-VxEbEzjBXZ2KaPiTjJ3G_HC475GbrhQGAWnwGIT7Wd_m2NBsMlQ2Qy3AsUbvnt1nj1WpNvxGTg8lofis8gKL9hPOwfflH1ZQaNPIDMv3-XKMVeQk3lQ7N569MjP_tzyHp7-x5dLYFniPSgaJH8lytK_qoMa5CJwXKpdUrnSkUX_m5o40j17UhOuq5Kh3t9sAH0Hmpy2rdJ4v8bjEaB22RhOCZs7gKBB7Jksim_pyrIZPWE4CUQ8RTroQQWkvnZGSZYTb20O0cIIUbmsgoo3znj0m3KAs4IVSAMylk1lOyWCirJXcKVWxp5phJVXJKejgFq7cmDcaqHf3Z383nZB-XAS_aeXxButX7Bi49flf6ql64L6S-m6g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSsNAFB1KXehKpRXfzsKlSSeTyWOWUgyttrWUCt2VeYIoidjUhV_v3CS2KC7chSGQeYVz5s459yJ0XZk9HSx6nKTaY5ILj8fK_VdxqFhoFbFVJqbxJB48sftFtGihm40XxhhTic-MD4_VXb4u1BpCZT3gMhRK1O443GdR7dZqbL8B4b1hf3bLHISCAYVSv3n9R92UCjayfTT-_mCtFnnx16X01eevXIz_7dEB6m4Neni6gZ5D1DJ5B2WZWJX4UUJkBQ9zEEyLVzwVIL9ys4drT65tgnTYsVXc3-6CD4NnhSzKVRfNs7t5f-A1ZRK8Z0rC0mNwKIsDnbiTrjQp144CJNQENKGCMSYlt5YHmiiiQwfe1hogcZEKlFDCdf4ItfMiN8cIM2NVYlLtSFnIhJacWgE6tiS1RCUiPkEdmILlW50IY9mM_vTv5iu0O5iPR8vRcPJwhvZgSeDanYbnqF2-r82FQ_NSXlaL-AX75p71
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+International+Conference+on+Robotics+and+Automation+%28ICRA%29&rft.atitle=Fast+Object+Inertial+Parameter+Identification+for+Collaborative+Robots&rft.au=Nadeau%2C+Philippe&rft.au=Giamou%2C+Matthew&rft.au=Kelly%2C+Jonathan&rft.date=2022-05-23&rft.pub=IEEE&rft.spage=3560&rft.epage=3566&rft_id=info:doi/10.1109%2FICRA46639.2022.9916213&rft.externalDocID=9916213