Fast Object Inertial Parameter Identification for Collaborative Robots
Collaborative robots (cobots) are machines designed to work safely alongside people in human-centric environments. Providing cobots with the ability to quickly infer the inertial parameters of manipulated objects will improve their flexibility and enable greater usage in manufacturing and other area...
Saved in:
Published in | 2022 International Conference on Robotics and Automation (ICRA) pp. 3560 - 3566 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
23.05.2022
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ICRA46639.2022.9916213 |
Cover
Abstract | Collaborative robots (cobots) are machines designed to work safely alongside people in human-centric environments. Providing cobots with the ability to quickly infer the inertial parameters of manipulated objects will improve their flexibility and enable greater usage in manufacturing and other areas. To ensure safety, cobots are subject to kinematic limits that result in low signal-to-noise ratios (SNR) for velocity, acceleration, and force-torque data. This renders existing inertial parameter identification algorithms prohibitively slow and inaccurate. Motivated by the desire for faster model acquisition, we investigate the use of an approximation of rigid body dynamics to improve the SNR. Additionally, we introduce a mass discretization method that can make use of shape information to quickly identify plausible inertial parameters for a manipulated object. We present extensive simulation studies and real-world experiments demonstrating that our approach complements existing inertial parameter identification methods by specifically targeting the typical cobot operating regime. |
---|---|
AbstractList | Collaborative robots (cobots) are machines designed to work safely alongside people in human-centric environments. Providing cobots with the ability to quickly infer the inertial parameters of manipulated objects will improve their flexibility and enable greater usage in manufacturing and other areas. To ensure safety, cobots are subject to kinematic limits that result in low signal-to-noise ratios (SNR) for velocity, acceleration, and force-torque data. This renders existing inertial parameter identification algorithms prohibitively slow and inaccurate. Motivated by the desire for faster model acquisition, we investigate the use of an approximation of rigid body dynamics to improve the SNR. Additionally, we introduce a mass discretization method that can make use of shape information to quickly identify plausible inertial parameters for a manipulated object. We present extensive simulation studies and real-world experiments demonstrating that our approach complements existing inertial parameter identification methods by specifically targeting the typical cobot operating regime. |
Author | Nadeau, Philippe Giamou, Matthew Kelly, Jonathan |
Author_xml | – sequence: 1 givenname: Philippe surname: Nadeau fullname: Nadeau, Philippe email: philippe.nadeau@robotics.utias.utoronto.ca organization: STARS Laboratory at the University of Toronto Institute for Aerospace Studies,Toronto,Ontario,Canada – sequence: 2 givenname: Matthew surname: Giamou fullname: Giamou, Matthew email: matthew.giamou@robotics.utias.utoronto.ca organization: STARS Laboratory at the University of Toronto Institute for Aerospace Studies,Toronto,Ontario,Canada – sequence: 3 givenname: Jonathan surname: Kelly fullname: Kelly, Jonathan email: jonathan.kellyz@robotics.utias.utoronto.ca organization: STARS Laboratory at the University of Toronto Institute for Aerospace Studies,Toronto,Ontario,Canada |
BookMark | eNotj8FKxDAURSPoQsf5AkHyA615SUz7lkOxWhgYGWY_JOkLRDqNpEHw7y043MWBu7ic-8Bu5zQTY88gagCBL0N33GljFNZSSFkjgpGgbtgWmxYa2QKalfes7-1S-MF9kS98mCmXaCf-abO9UKHMh5HmEkP0tsQ085Ay79I0WZfy2vwQPyaXyvLI7oKdFtpeuWGn_u3UfVT7w_vQ7fZVlEKVSkstGgNjow06anEUuMoQyEZarbVzGALCKLwYlQEVAr2aNR689Xb137Cn_9lIROfvHC82_56v59Qfe7JJIw |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICRA46639.2022.9916213 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore Digital Libary (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781728196817 1728196817 |
EndPage | 3566 |
ExternalDocumentID | 9916213 |
Genre | orig-research |
GroupedDBID | 6IE 6IH CBEJK RIE RIO |
ID | FETCH-LOGICAL-i203t-4240761d7469be89d09172e1272a444bb9ff91d0c0d3613ffe56565c1caca213 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:17:55 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-4240761d7469be89d09172e1272a444bb9ff91d0c0d3613ffe56565c1caca213 |
PageCount | 7 |
ParticipantIDs | ieee_primary_9916213 |
PublicationCentury | 2000 |
PublicationDate | 2022-May-23 |
PublicationDateYYYYMMDD | 2022-05-23 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-May-23 day: 23 |
PublicationDecade | 2020 |
PublicationTitle | 2022 International Conference on Robotics and Automation (ICRA) |
PublicationTitleAbbrev | ICRA |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8900689 |
Snippet | Collaborative robots (cobots) are machines designed to work safely alongside people in human-centric environments. Providing cobots with the ability to quickly... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 3560 |
SubjectTerms | Collaboration Dynamics Heuristic algorithms Object recognition Parameter estimation Shape Uncertainty |
Title | Fast Object Inertial Parameter Identification for Collaborative Robots |
URI | https://ieeexplore.ieee.org/document/9916213 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF1qT55UWvGbPXg06WazTbJHKYZWqJZSobeyH7MgSiI29eCvdyeJLYoHb2EJZL_Cezv73gwh17XZ08NiIFlmA6GlCmRi_H-VxEbEzjBXZ2KaPiTjJ3G_HC475GbrhQGAWnwGIT7Wd_m2NBsMlQ2Qy3AsUbvnt1nj1WpNvxGTg8lofis8gKL9hPOwfflH1ZQaNPIDMv3-XKMVeQk3lQ7N569MjP_tzyHp7-x5dLYFniPSgaJH8lytK_qoMa5CJwXKpdUrnSkUX_m5o40j17UhOuq5Kh3t9sAH0Hmpy2rdJ4v8bjEaB22RhOCZs7gKBB7Jksim_pyrIZPWE4CUQ8RTroQQWkvnZGSZYTb20O0cIIUbmsgoo3znj0m3KAs4IVSAMylk1lOyWCirJXcKVWxp5phJVXJKejgFq7cmDcaqHf3Z383nZB-XAS_aeXxButX7Bi49flf6ql64L6S-m6g |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSsNAFB1KXehKpRXfzsKlSSeTyWOWUgyttrWUCt2VeYIoidjUhV_v3CS2KC7chSGQeYVz5s459yJ0XZk9HSx6nKTaY5ILj8fK_VdxqFhoFbFVJqbxJB48sftFtGihm40XxhhTic-MD4_VXb4u1BpCZT3gMhRK1O443GdR7dZqbL8B4b1hf3bLHISCAYVSv3n9R92UCjayfTT-_mCtFnnx16X01eevXIz_7dEB6m4Neni6gZ5D1DJ5B2WZWJX4UUJkBQ9zEEyLVzwVIL9ys4drT65tgnTYsVXc3-6CD4NnhSzKVRfNs7t5f-A1ZRK8Z0rC0mNwKIsDnbiTrjQp144CJNQENKGCMSYlt5YHmiiiQwfe1hogcZEKlFDCdf4ItfMiN8cIM2NVYlLtSFnIhJacWgE6tiS1RCUiPkEdmILlW50IY9mM_vTv5iu0O5iPR8vRcPJwhvZgSeDanYbnqF2-r82FQ_NSXlaL-AX75p71 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+International+Conference+on+Robotics+and+Automation+%28ICRA%29&rft.atitle=Fast+Object+Inertial+Parameter+Identification+for+Collaborative+Robots&rft.au=Nadeau%2C+Philippe&rft.au=Giamou%2C+Matthew&rft.au=Kelly%2C+Jonathan&rft.date=2022-05-23&rft.pub=IEEE&rft.spage=3560&rft.epage=3566&rft_id=info:doi/10.1109%2FICRA46639.2022.9916213&rft.externalDocID=9916213 |