Photonic-aware Neural Networks for Packet Classification in URLLC scenarios

Ultra Reliable Low Latency Communications (URLLC) scenarios require very low latency and high reliability, imposing an optimization of every aspect of 5G data processing, transmission, and networking. Artificial Intelligence (AI)-based tools can be helpful resources in this context, enhancing multip...

Full description

Saved in:
Bibliographic Details
Published in2022 IEEE 23rd International Conference on High Performance Switching and Routing (HPSR) pp. 218 - 223
Main Authors Paolini, Emilio, Civerchia, Federico, De Marinis, Lorenzo, Valcarenghi, Luca, Maggiani, Luca, Andriolli, Nicola
Format Conference Proceeding
LanguageEnglish
Published IEEE 06.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ultra Reliable Low Latency Communications (URLLC) scenarios require very low latency and high reliability, imposing an optimization of every aspect of 5G data processing, transmission, and networking. Artificial Intelligence (AI)-based tools can be helpful resources in this context, enhancing multiple functionalities, from network resource allocation to network security. In this paper we propose a solution placed at the next generation eNB (gNB)-Central Unit (CU) level, relying on Neural Networks (NNs), capable of classifying incoming packets. The developed system increases the security of 5G and B5G architectures, protecting the 5G Core (5GC) from potential attacks. To comply with URLLC requirements on latency, we present an architecture leveraging photonic hardware to speed-up NN computations. The proposed solution, namely Photonic-Aware Neural Network (PANN), complies with physical layer constraints raised by photonic analog computing and can achieve high throughput and time-of-flight latency. The classification performance of the devised PANN model has been assessed through simulation on the distilled Kitsune dataset, suited for 5G scenarios. The experiments proved that PANN significantly lowers the chance of transmitting malicious packets to the 5GC with a classification performance increasing with the bit resolution supported by the analog photonic physical layer.
AbstractList Ultra Reliable Low Latency Communications (URLLC) scenarios require very low latency and high reliability, imposing an optimization of every aspect of 5G data processing, transmission, and networking. Artificial Intelligence (AI)-based tools can be helpful resources in this context, enhancing multiple functionalities, from network resource allocation to network security. In this paper we propose a solution placed at the next generation eNB (gNB)-Central Unit (CU) level, relying on Neural Networks (NNs), capable of classifying incoming packets. The developed system increases the security of 5G and B5G architectures, protecting the 5G Core (5GC) from potential attacks. To comply with URLLC requirements on latency, we present an architecture leveraging photonic hardware to speed-up NN computations. The proposed solution, namely Photonic-Aware Neural Network (PANN), complies with physical layer constraints raised by photonic analog computing and can achieve high throughput and time-of-flight latency. The classification performance of the devised PANN model has been assessed through simulation on the distilled Kitsune dataset, suited for 5G scenarios. The experiments proved that PANN significantly lowers the chance of transmitting malicious packets to the 5GC with a classification performance increasing with the bit resolution supported by the analog photonic physical layer.
Author Maggiani, Luca
Andriolli, Nicola
De Marinis, Lorenzo
Valcarenghi, Luca
Civerchia, Federico
Paolini, Emilio
Author_xml – sequence: 1
  givenname: Emilio
  surname: Paolini
  fullname: Paolini, Emilio
  email: emilio.paolini@santannapisa.it
  organization: Scuola Superiore Sant'Anna,Pisa,Italy,56124
– sequence: 2
  givenname: Federico
  surname: Civerchia
  fullname: Civerchia, Federico
  organization: Scuola Superiore Sant'Anna,Pisa,Italy,56124
– sequence: 3
  givenname: Lorenzo
  surname: De Marinis
  fullname: De Marinis, Lorenzo
  organization: Scuola Superiore Sant'Anna,Pisa,Italy,56124
– sequence: 4
  givenname: Luca
  surname: Valcarenghi
  fullname: Valcarenghi, Luca
  organization: Scuola Superiore Sant'Anna,Pisa,Italy,56124
– sequence: 5
  givenname: Luca
  surname: Maggiani
  fullname: Maggiani, Luca
  organization: Sma-RTy Italia SRL,Carugate,Italy,20061
– sequence: 6
  givenname: Nicola
  surname: Andriolli
  fullname: Andriolli, Nicola
  organization: CNR-IEIIT,National Research Council of Italy,Pisa,Italy,56122
BookMark eNotj9FKwzAUQKMoOOe-QJD8QOdN0jS5j1J0E4uO6Z7HbbnBsNlIWhn-vQP3dJ7OgXMtLvrUsxB3CuZKAd4vV-9rW5YG5xq0nqM3Slt1JmbovKoqW0IFDs_FRBttC1sBXonZMMQWSm-hdFhNxMvqM42pj11BB8osX_kn0_6I8ZDybpAhZbmibsejrPd0lEPsaIypl7GXm3XT1HLouKcc03AjLgPtB56dOBWbp8ePelk0b4vn-qEpogYzFqYzzmkCDUSoWDlHgTwGbjU7q1zpOCB5Bus1ao1cIRlwjOBDy11rpuL2vxuZefud4xfl3-1p3_wBj9RQ8Q
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/HPSR54439.2022.9831251
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665406079
1665406070
EISSN 2325-5609
EndPage 223
ExternalDocumentID 9831251
Genre orig-research
GroupedDBID 6IE
6IL
ABLEC
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IEGSK
RIE
RIL
ID FETCH-LOGICAL-i203t-3c3772a020aa91e177afa89feb2e751747ef9a8e05829229e69a307e908fbecb3
IEDL.DBID RIE
IngestDate Mon Nov 04 11:48:30 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-3c3772a020aa91e177afa89feb2e751747ef9a8e05829229e69a307e908fbecb3
PageCount 6
ParticipantIDs ieee_primary_9831251
PublicationCentury 2000
PublicationDate 2022-June-6
PublicationDateYYYYMMDD 2022-06-06
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-June-6
  day: 06
PublicationDecade 2020
PublicationTitle 2022 IEEE 23rd International Conference on High Performance Switching and Routing (HPSR)
PublicationTitleAbbrev HPSR
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib048504796
ssib025354883
Score 1.8443117
Snippet Ultra Reliable Low Latency Communications (URLLC) scenarios require very low latency and high reliability, imposing an optimization of every aspect of 5G data...
SourceID ieee
SourceType Publisher
StartPage 218
SubjectTerms 5G mobile communication
Artificial neural networks
Computational modeling
Computer architecture
Physical layer
Throughput
Ultra reliable low latency communication
Title Photonic-aware Neural Networks for Packet Classification in URLLC scenarios
URI https://ieeexplore.ieee.org/document/9831251
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bTp5UNvE3OXi0XZc0Td55OIY6KdPBbiNtX3AonWwdgn-9SdZtKB48peRQQl4e30v7fd8j5AaMyYVQRcBjlgex4XGQcWQBVyLJQBYCvOp99JQMJ_H9VEwb5HanhUFETz7D0D36f_nFIl-7T2VdUNzhcZM0JcBGq7U9O0xwW3vvoTJWwpmnJ7UouBdBd5g-j53bm5OnMBbWL_vRVcWDyuCQjLbL2XBJ3sJ1lYX51y-nxv-u94h09vI9mu6A6Zg0sGyTh_R1UTkf3EB_6iVS58qh3-3gaeAraotXmmqb0xX1jTIdhchHjc5LOhk_PvapM36yV-vFqkMmg7uX_jCoOykEcxbxKuA5t1W0tqWh1tDDnpTaaAXGXqtROq9qiQa0wkgoBowBJqBt8iNEytggZ_yEtMpFiaeEIqCRHJLMRCrG3CiRSV6oBCTkWQL8jLTdRsw-NmYZs3oPzv-eviAHLhiee5Vckla1XOOVRfkqu_bh_QaMqqWL
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwGG0QD3pSA8bf9uDRwWjXrt-ZSFAGIQgJN9KNr9FowMCIiX-9bRkQjQdPW3ZYmn5t3uv23vsIuQNjMiHUNOARy4LI8ChIObKAKyFTiKcCvOu925PtUfQ0FuMSud96YRDRi8-w5m79v_zpPFu5T2V1UNzh8R7Zt7xaybVba7N6mOCWfe_AMlLCxafLwhbcCKHe7j8PXN6bM6gwVite96OvioeV1hHpbga0VpO81VZ5Wsu-fmU1_nfEx6S6M_DR_haaTkgJZxXS6b_Mc5eEG-hPvUDqcjn0u714IfiSWvpK-9ru6pz6VplOROTrRl9ndDRIkiZ10U_2cD1fVsmo9TBstoOil0LwykKeBzzjlkdrSw61hgY24lgbrcDYgzXGLq06RgNaYSgUA8YAJWi7_RFCZWyZU35KyrP5DM8IRUATc5CpCVWEmVEijflUSYghSyXwc1JxEzH5WMdlTIo5uPj78S05aA-7ySR57HUuyaErjFdiyStSzhcrvLaYn6c3vtTfZfGo1g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+23rd+International+Conference+on+High+Performance+Switching+and+Routing+%28HPSR%29&rft.atitle=Photonic-aware+Neural+Networks+for+Packet+Classification+in+URLLC+scenarios&rft.au=Paolini%2C+Emilio&rft.au=Civerchia%2C+Federico&rft.au=De+Marinis%2C+Lorenzo&rft.au=Valcarenghi%2C+Luca&rft.date=2022-06-06&rft.pub=IEEE&rft.eissn=2325-5609&rft.spage=218&rft.epage=223&rft_id=info:doi/10.1109%2FHPSR54439.2022.9831251&rft.externalDocID=9831251