Photonic-aware Neural Networks for Packet Classification in URLLC scenarios
Ultra Reliable Low Latency Communications (URLLC) scenarios require very low latency and high reliability, imposing an optimization of every aspect of 5G data processing, transmission, and networking. Artificial Intelligence (AI)-based tools can be helpful resources in this context, enhancing multip...
Saved in:
Published in | 2022 IEEE 23rd International Conference on High Performance Switching and Routing (HPSR) pp. 218 - 223 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
06.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ultra Reliable Low Latency Communications (URLLC) scenarios require very low latency and high reliability, imposing an optimization of every aspect of 5G data processing, transmission, and networking. Artificial Intelligence (AI)-based tools can be helpful resources in this context, enhancing multiple functionalities, from network resource allocation to network security. In this paper we propose a solution placed at the next generation eNB (gNB)-Central Unit (CU) level, relying on Neural Networks (NNs), capable of classifying incoming packets. The developed system increases the security of 5G and B5G architectures, protecting the 5G Core (5GC) from potential attacks. To comply with URLLC requirements on latency, we present an architecture leveraging photonic hardware to speed-up NN computations. The proposed solution, namely Photonic-Aware Neural Network (PANN), complies with physical layer constraints raised by photonic analog computing and can achieve high throughput and time-of-flight latency. The classification performance of the devised PANN model has been assessed through simulation on the distilled Kitsune dataset, suited for 5G scenarios. The experiments proved that PANN significantly lowers the chance of transmitting malicious packets to the 5GC with a classification performance increasing with the bit resolution supported by the analog photonic physical layer. |
---|---|
AbstractList | Ultra Reliable Low Latency Communications (URLLC) scenarios require very low latency and high reliability, imposing an optimization of every aspect of 5G data processing, transmission, and networking. Artificial Intelligence (AI)-based tools can be helpful resources in this context, enhancing multiple functionalities, from network resource allocation to network security. In this paper we propose a solution placed at the next generation eNB (gNB)-Central Unit (CU) level, relying on Neural Networks (NNs), capable of classifying incoming packets. The developed system increases the security of 5G and B5G architectures, protecting the 5G Core (5GC) from potential attacks. To comply with URLLC requirements on latency, we present an architecture leveraging photonic hardware to speed-up NN computations. The proposed solution, namely Photonic-Aware Neural Network (PANN), complies with physical layer constraints raised by photonic analog computing and can achieve high throughput and time-of-flight latency. The classification performance of the devised PANN model has been assessed through simulation on the distilled Kitsune dataset, suited for 5G scenarios. The experiments proved that PANN significantly lowers the chance of transmitting malicious packets to the 5GC with a classification performance increasing with the bit resolution supported by the analog photonic physical layer. |
Author | Maggiani, Luca Andriolli, Nicola De Marinis, Lorenzo Valcarenghi, Luca Civerchia, Federico Paolini, Emilio |
Author_xml | – sequence: 1 givenname: Emilio surname: Paolini fullname: Paolini, Emilio email: emilio.paolini@santannapisa.it organization: Scuola Superiore Sant'Anna,Pisa,Italy,56124 – sequence: 2 givenname: Federico surname: Civerchia fullname: Civerchia, Federico organization: Scuola Superiore Sant'Anna,Pisa,Italy,56124 – sequence: 3 givenname: Lorenzo surname: De Marinis fullname: De Marinis, Lorenzo organization: Scuola Superiore Sant'Anna,Pisa,Italy,56124 – sequence: 4 givenname: Luca surname: Valcarenghi fullname: Valcarenghi, Luca organization: Scuola Superiore Sant'Anna,Pisa,Italy,56124 – sequence: 5 givenname: Luca surname: Maggiani fullname: Maggiani, Luca organization: Sma-RTy Italia SRL,Carugate,Italy,20061 – sequence: 6 givenname: Nicola surname: Andriolli fullname: Andriolli, Nicola organization: CNR-IEIIT,National Research Council of Italy,Pisa,Italy,56122 |
BookMark | eNotj9FKwzAUQKMoOOe-QJD8QOdN0jS5j1J0E4uO6Z7HbbnBsNlIWhn-vQP3dJ7OgXMtLvrUsxB3CuZKAd4vV-9rW5YG5xq0nqM3Slt1JmbovKoqW0IFDs_FRBttC1sBXonZMMQWSm-hdFhNxMvqM42pj11BB8osX_kn0_6I8ZDybpAhZbmibsejrPd0lEPsaIypl7GXm3XT1HLouKcc03AjLgPtB56dOBWbp8ePelk0b4vn-qEpogYzFqYzzmkCDUSoWDlHgTwGbjU7q1zpOCB5Bus1ao1cIRlwjOBDy11rpuL2vxuZefud4xfl3-1p3_wBj9RQ8Q |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/HPSR54439.2022.9831251 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781665406079 1665406070 |
EISSN | 2325-5609 |
EndPage | 223 |
ExternalDocumentID | 9831251 |
Genre | orig-research |
GroupedDBID | 6IE 6IL ABLEC ALMA_UNASSIGNED_HOLDINGS CBEJK IEGSK RIE RIL |
ID | FETCH-LOGICAL-i203t-3c3772a020aa91e177afa89feb2e751747ef9a8e05829229e69a307e908fbecb3 |
IEDL.DBID | RIE |
IngestDate | Mon Nov 04 11:48:30 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-3c3772a020aa91e177afa89feb2e751747ef9a8e05829229e69a307e908fbecb3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_9831251 |
PublicationCentury | 2000 |
PublicationDate | 2022-June-6 |
PublicationDateYYYYMMDD | 2022-06-06 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-June-6 day: 06 |
PublicationDecade | 2020 |
PublicationTitle | 2022 IEEE 23rd International Conference on High Performance Switching and Routing (HPSR) |
PublicationTitleAbbrev | HPSR |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssib048504796 ssib025354883 |
Score | 1.8443117 |
Snippet | Ultra Reliable Low Latency Communications (URLLC) scenarios require very low latency and high reliability, imposing an optimization of every aspect of 5G data... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 218 |
SubjectTerms | 5G mobile communication Artificial neural networks Computational modeling Computer architecture Physical layer Throughput Ultra reliable low latency communication |
Title | Photonic-aware Neural Networks for Packet Classification in URLLC scenarios |
URI | https://ieeexplore.ieee.org/document/9831251 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bTp5UNvE3OXi0XZc0Td55OIY6KdPBbiNtX3AonWwdgn-9SdZtKB48peRQQl4e30v7fd8j5AaMyYVQRcBjlgex4XGQcWQBVyLJQBYCvOp99JQMJ_H9VEwb5HanhUFETz7D0D36f_nFIl-7T2VdUNzhcZM0JcBGq7U9O0xwW3vvoTJWwpmnJ7UouBdBd5g-j53bm5OnMBbWL_vRVcWDyuCQjLbL2XBJ3sJ1lYX51y-nxv-u94h09vI9mu6A6Zg0sGyTh_R1UTkf3EB_6iVS58qh3-3gaeAraotXmmqb0xX1jTIdhchHjc5LOhk_PvapM36yV-vFqkMmg7uX_jCoOykEcxbxKuA5t1W0tqWh1tDDnpTaaAXGXqtROq9qiQa0wkgoBowBJqBt8iNEytggZ_yEtMpFiaeEIqCRHJLMRCrG3CiRSV6oBCTkWQL8jLTdRsw-NmYZs3oPzv-eviAHLhiee5Vckla1XOOVRfkqu_bh_QaMqqWL |
link.rule.ids | 310,311,783,787,792,793,799,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwGG0QD3pSA8bf9uDRwWjXrt-ZSFAGIQgJN9KNr9FowMCIiX-9bRkQjQdPW3ZYmn5t3uv23vsIuQNjMiHUNOARy4LI8ChIObKAKyFTiKcCvOu925PtUfQ0FuMSud96YRDRi8-w5m79v_zpPFu5T2V1UNzh8R7Zt7xaybVba7N6mOCWfe_AMlLCxafLwhbcCKHe7j8PXN6bM6gwVite96OvioeV1hHpbga0VpO81VZ5Wsu-fmU1_nfEx6S6M_DR_haaTkgJZxXS6b_Mc5eEG-hPvUDqcjn0u714IfiSWvpK-9ru6pz6VplOROTrRl9ndDRIkiZ10U_2cD1fVsmo9TBstoOil0LwykKeBzzjlkdrSw61hgY24lgbrcDYgzXGLq06RgNaYSgUA8YAJWi7_RFCZWyZU35KyrP5DM8IRUATc5CpCVWEmVEijflUSYghSyXwc1JxEzH5WMdlTIo5uPj78S05aA-7ySR57HUuyaErjFdiyStSzhcrvLaYn6c3vtTfZfGo1g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+23rd+International+Conference+on+High+Performance+Switching+and+Routing+%28HPSR%29&rft.atitle=Photonic-aware+Neural+Networks+for+Packet+Classification+in+URLLC+scenarios&rft.au=Paolini%2C+Emilio&rft.au=Civerchia%2C+Federico&rft.au=De+Marinis%2C+Lorenzo&rft.au=Valcarenghi%2C+Luca&rft.date=2022-06-06&rft.pub=IEEE&rft.eissn=2325-5609&rft.spage=218&rft.epage=223&rft_id=info:doi/10.1109%2FHPSR54439.2022.9831251&rft.externalDocID=9831251 |