Attending to Emotional Narratives
Attention mechanisms in deep neural networks have achieved excellent performance on sequence-prediction tasks. Here, we show that these recently-proposed attention-based mechanisms-in particular, the Transformer with its parallelizable self-attention layers, and the Memory Fusion Network with attent...
Saved in:
Published in | International Conference on Affective Computing and Intelligent Interaction and workshops pp. 648 - 654 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.09.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 2156-8111 |
DOI | 10.1109/ACII.2019.8925497 |
Cover
Loading…
Abstract | Attention mechanisms in deep neural networks have achieved excellent performance on sequence-prediction tasks. Here, we show that these recently-proposed attention-based mechanisms-in particular, the Transformer with its parallelizable self-attention layers, and the Memory Fusion Network with attention across modalities and time-also generalize well to multimodal time-series emotion recognition. Using a recently-introduced dataset of emotional autobiographical narratives, we adapt and apply these two attention mechanisms to predict emotional valence over time. Our models perform extremely well, in some cases reaching a performance comparable with human raters. We end with a discussion of the implications of attention mechanisms to affective computing. |
---|---|
AbstractList | Attention mechanisms in deep neural networks have achieved excellent performance on sequence-prediction tasks. Here, we show that these recently-proposed attention-based mechanisms-in particular, the Transformer with its parallelizable self-attention layers, and the Memory Fusion Network with attention across modalities and time-also generalize well to multimodal time-series emotion recognition. Using a recently-introduced dataset of emotional autobiographical narratives, we adapt and apply these two attention mechanisms to predict emotional valence over time. Our models perform extremely well, in some cases reaching a performance comparable with human raters. We end with a discussion of the implications of attention mechanisms to affective computing. |
Author | Zhang, Xiyu Ong, Desmond C. Wu, Zhengxuan Zaki, Jamil Zhi-Xuan, Tan |
Author_xml | – sequence: 1 givenname: Zhengxuan surname: Wu fullname: Wu, Zhengxuan organization: Stanford University,Department of Management Science and Engineering,Stanford,CA,USA – sequence: 2 givenname: Xiyu surname: Zhang fullname: Zhang, Xiyu organization: Stanford University,Department of Computer Science,Stanford,CA,USA – sequence: 3 givenname: Tan surname: Zhi-Xuan fullname: Zhi-Xuan, Tan organization: ASTAR Artificial Intelligence Initiative, Agency for Science, Technology and Research,Singapore – sequence: 4 givenname: Jamil surname: Zaki fullname: Zaki, Jamil organization: Stanford University,Department of Psychology,Stanford,CA,USA – sequence: 5 givenname: Desmond C. surname: Ong fullname: Ong, Desmond C. organization: National University of Singapore,Department of Information Systems and Analytics |
BookMark | eNotj8FKxDAUAKMouK79APFSP6DdvKRJXo6lrFpY1ouelyR9lchuKm0Q_HsF9zSXYWBu2VWaEjF2D7wG4HbTdn1fCw62RitUY80FK6xBMAJBIqK-ZCsBSlcIADesWJZPzv90xRHVij22OVMaYvoo81RuT1OOU3LHcu_m2eX4Tcsdux7dcaHizDV7f9q-dS_V7vW579pdFQWXuZLodLDeWMIAXg4kRwPInTbDIDVSUN7w0OhRSE7aecLG2MFqI4K3CoNcs4f_biSiw9ccT27-OZyn5C9goEC3 |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ACII.2019.8925497 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9781728138886 1728138884 |
EISSN | 2156-8111 |
EndPage | 654 |
ExternalDocumentID | 8925497 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i203t-38a6c9b79e8c1b3de3f7180a67dd368ec5b70c46f230e6abe8479d9672cb958c3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:49:48 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-38a6c9b79e8c1b3de3f7180a67dd368ec5b70c46f230e6abe8479d9672cb958c3 |
PageCount | 7 |
ParticipantIDs | ieee_primary_8925497 |
PublicationCentury | 2000 |
PublicationDate | 2019-Sept. |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-Sept. |
PublicationDecade | 2010 |
PublicationTitle | International Conference on Affective Computing and Intelligent Interaction and workshops |
PublicationTitleAbbrev | ACII |
PublicationYear | 2019 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001950885 |
Score | 1.7994058 |
Snippet | Attention mechanisms in deep neural networks have achieved excellent performance on sequence-prediction tasks. Here, we show that these recently-proposed... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 648 |
SubjectTerms | Acoustics Attention Computational modeling Deep Learning Emotion recognition Linguistics Multimodal Emotion Recognition Neural networks Task analysis Time-series Emotion Recognition Visualization |
Title | Attending to Emotional Narratives |
URI | https://ieeexplore.ieee.org/document/8925497 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JawIxFH6op55sq6U7U-ix0TiZJJOjiKIFpYcK3iTLC5QWLTpe-uubWVRaeugthITsfHnrB_DIpIuFiy2hwiiSOC-JSlET6ZnjKLynhSlmOhPjefK84IsaPB1iYRCxcD7DTl4sbPlubXe5qqybqlyckXWoB8GtjNU66lMKOlNeGS57VHX7g8kk990Kl6Hs94NApcCPUROm-5FLt5H3zi4zHfv1Kynjf6d2Cu1jpF70csCgM6jh6hyae6qGqHq5LXjoZ7myO7SJsnU0LLl79Ec005sy9fe2DfPR8HUwJhU7AnmLKcsIS7WwykiFqe0Z5pD5gDNUC-kcEylabiS1ifBByEChDQYcUk4JGVujeGrZBTRW6xVeQoTCoOJacsMxEdRrpTAxApXQ4cPj-BW08hUvP8sEGMtqsdd_V9_ASb7rpSPWLTSyzQ7vAnJn5r44sm__NJjK |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4gHvSECsa3a-LRhWW7bbdHYiCgQDxAwo30MU2MBgwuF3-97e4C0Xjw1jRt2mbafJ3nB3BPuImZiXUYMSXCxFgeihRlyC0xFJm1Ue6KGY1Zf5o8zeisAg_bXBhEzIPPsOmbuS_fLPXam8paqfDqDN-DfYf7tF1ka-0sKjmhKS1dl-1ItDqPg4GP3nLXoZj5g0IlR5BeDUabtYvAkbfmOlNN_fWrLON_N3cEjV2uXvCyRaFjqODiBGobsoagfLt1uOtk3tztxgTZMugW7D3yPRjLVVH8-7MB01538tgPS36E8DWOSBaSVDItFBeY6rYiBol1SBNJxo0hLEVNFY90wqxTM5BJhQ6JhBGMx1oJmmpyCtXFcoFnECBTKKjkVFFMWGSlEJgohoJJ9-Ux9Bzq_sTzj6IExrw87MXf3bdw0J-MhvPhYPx8CYdeAkVY1hVUs9Uarx2OZ-omF983LCqcEw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Affective+Computing+and+Intelligent+Interaction+and+workshops&rft.atitle=Attending+to+Emotional+Narratives&rft.au=Wu%2C+Zhengxuan&rft.au=Zhang%2C+Xiyu&rft.au=Zhi-Xuan%2C+Tan&rft.au=Zaki%2C+Jamil&rft.date=2019-09-01&rft.pub=IEEE&rft.eissn=2156-8111&rft.spage=648&rft.epage=654&rft_id=info:doi/10.1109%2FACII.2019.8925497&rft.externalDocID=8925497 |