Attending to Emotional Narratives

Attention mechanisms in deep neural networks have achieved excellent performance on sequence-prediction tasks. Here, we show that these recently-proposed attention-based mechanisms-in particular, the Transformer with its parallelizable self-attention layers, and the Memory Fusion Network with attent...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Affective Computing and Intelligent Interaction and workshops pp. 648 - 654
Main Authors Wu, Zhengxuan, Zhang, Xiyu, Zhi-Xuan, Tan, Zaki, Jamil, Ong, Desmond C.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2019
Subjects
Online AccessGet full text
ISSN2156-8111
DOI10.1109/ACII.2019.8925497

Cover

Loading…
Abstract Attention mechanisms in deep neural networks have achieved excellent performance on sequence-prediction tasks. Here, we show that these recently-proposed attention-based mechanisms-in particular, the Transformer with its parallelizable self-attention layers, and the Memory Fusion Network with attention across modalities and time-also generalize well to multimodal time-series emotion recognition. Using a recently-introduced dataset of emotional autobiographical narratives, we adapt and apply these two attention mechanisms to predict emotional valence over time. Our models perform extremely well, in some cases reaching a performance comparable with human raters. We end with a discussion of the implications of attention mechanisms to affective computing.
AbstractList Attention mechanisms in deep neural networks have achieved excellent performance on sequence-prediction tasks. Here, we show that these recently-proposed attention-based mechanisms-in particular, the Transformer with its parallelizable self-attention layers, and the Memory Fusion Network with attention across modalities and time-also generalize well to multimodal time-series emotion recognition. Using a recently-introduced dataset of emotional autobiographical narratives, we adapt and apply these two attention mechanisms to predict emotional valence over time. Our models perform extremely well, in some cases reaching a performance comparable with human raters. We end with a discussion of the implications of attention mechanisms to affective computing.
Author Zhang, Xiyu
Ong, Desmond C.
Wu, Zhengxuan
Zaki, Jamil
Zhi-Xuan, Tan
Author_xml – sequence: 1
  givenname: Zhengxuan
  surname: Wu
  fullname: Wu, Zhengxuan
  organization: Stanford University,Department of Management Science and Engineering,Stanford,CA,USA
– sequence: 2
  givenname: Xiyu
  surname: Zhang
  fullname: Zhang, Xiyu
  organization: Stanford University,Department of Computer Science,Stanford,CA,USA
– sequence: 3
  givenname: Tan
  surname: Zhi-Xuan
  fullname: Zhi-Xuan, Tan
  organization: ASTAR Artificial Intelligence Initiative, Agency for Science, Technology and Research,Singapore
– sequence: 4
  givenname: Jamil
  surname: Zaki
  fullname: Zaki, Jamil
  organization: Stanford University,Department of Psychology,Stanford,CA,USA
– sequence: 5
  givenname: Desmond C.
  surname: Ong
  fullname: Ong, Desmond C.
  organization: National University of Singapore,Department of Information Systems and Analytics
BookMark eNotj8FKxDAUAKMouK79APFSP6DdvKRJXo6lrFpY1ouelyR9lchuKm0Q_HsF9zSXYWBu2VWaEjF2D7wG4HbTdn1fCw62RitUY80FK6xBMAJBIqK-ZCsBSlcIADesWJZPzv90xRHVij22OVMaYvoo81RuT1OOU3LHcu_m2eX4Tcsdux7dcaHizDV7f9q-dS_V7vW579pdFQWXuZLodLDeWMIAXg4kRwPInTbDIDVSUN7w0OhRSE7aecLG2MFqI4K3CoNcs4f_biSiw9ccT27-OZyn5C9goEC3
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ACII.2019.8925497
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781728138886
1728138884
EISSN 2156-8111
EndPage 654
ExternalDocumentID 8925497
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i203t-38a6c9b79e8c1b3de3f7180a67dd368ec5b70c46f230e6abe8479d9672cb958c3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:49:48 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-38a6c9b79e8c1b3de3f7180a67dd368ec5b70c46f230e6abe8479d9672cb958c3
PageCount 7
ParticipantIDs ieee_primary_8925497
PublicationCentury 2000
PublicationDate 2019-Sept.
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-Sept.
PublicationDecade 2010
PublicationTitle International Conference on Affective Computing and Intelligent Interaction and workshops
PublicationTitleAbbrev ACII
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001950885
Score 1.7994058
Snippet Attention mechanisms in deep neural networks have achieved excellent performance on sequence-prediction tasks. Here, we show that these recently-proposed...
SourceID ieee
SourceType Publisher
StartPage 648
SubjectTerms Acoustics
Attention
Computational modeling
Deep Learning
Emotion recognition
Linguistics
Multimodal Emotion Recognition
Neural networks
Task analysis
Time-series Emotion Recognition
Visualization
Title Attending to Emotional Narratives
URI https://ieeexplore.ieee.org/document/8925497
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JawIxFH6op55sq6U7U-ix0TiZJJOjiKIFpYcK3iTLC5QWLTpe-uubWVRaeugthITsfHnrB_DIpIuFiy2hwiiSOC-JSlET6ZnjKLynhSlmOhPjefK84IsaPB1iYRCxcD7DTl4sbPlubXe5qqybqlyckXWoB8GtjNU66lMKOlNeGS57VHX7g8kk990Kl6Hs94NApcCPUROm-5FLt5H3zi4zHfv1Kynjf6d2Cu1jpF70csCgM6jh6hyae6qGqHq5LXjoZ7myO7SJsnU0LLl79Ec005sy9fe2DfPR8HUwJhU7AnmLKcsIS7WwykiFqe0Z5pD5gDNUC-kcEylabiS1ifBByEChDQYcUk4JGVujeGrZBTRW6xVeQoTCoOJacsMxEdRrpTAxApXQ4cPj-BW08hUvP8sEGMtqsdd_V9_ASb7rpSPWLTSyzQ7vAnJn5r44sm__NJjK
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4gHvSECsa3a-LRhWW7bbdHYiCgQDxAwo30MU2MBgwuF3-97e4C0Xjw1jRt2mbafJ3nB3BPuImZiXUYMSXCxFgeihRlyC0xFJm1Ue6KGY1Zf5o8zeisAg_bXBhEzIPPsOmbuS_fLPXam8paqfDqDN-DfYf7tF1ka-0sKjmhKS1dl-1ItDqPg4GP3nLXoZj5g0IlR5BeDUabtYvAkbfmOlNN_fWrLON_N3cEjV2uXvCyRaFjqODiBGobsoagfLt1uOtk3tztxgTZMugW7D3yPRjLVVH8-7MB01538tgPS36E8DWOSBaSVDItFBeY6rYiBol1SBNJxo0hLEVNFY90wqxTM5BJhQ6JhBGMx1oJmmpyCtXFcoFnECBTKKjkVFFMWGSlEJgohoJJ9-Ux9Bzq_sTzj6IExrw87MXf3bdw0J-MhvPhYPx8CYdeAkVY1hVUs9Uarx2OZ-omF983LCqcEw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Affective+Computing+and+Intelligent+Interaction+and+workshops&rft.atitle=Attending+to+Emotional+Narratives&rft.au=Wu%2C+Zhengxuan&rft.au=Zhang%2C+Xiyu&rft.au=Zhi-Xuan%2C+Tan&rft.au=Zaki%2C+Jamil&rft.date=2019-09-01&rft.pub=IEEE&rft.eissn=2156-8111&rft.spage=648&rft.epage=654&rft_id=info:doi/10.1109%2FACII.2019.8925497&rft.externalDocID=8925497