SaleNet: A low-power end-to-end CNN accelerator for sustained attention level evaluation using EEG
This paper proposes SaleNet - an end-to-end convolutional neural network (CNN) for sustained attention level evaluation using prefrontal electroencephalogram (EEG). A bias-driven pruning method is proposed together with group convolution, global average pooling (GAP), near-zero pruning, weight clust...
Saved in:
Published in | IEEE International Symposium on Circuits and Systems proceedings pp. 2304 - 2308 |
---|---|
Main Authors | , , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
28.05.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2158-1525 |
DOI | 10.1109/ISCAS48785.2022.9937323 |
Cover
Loading…
Abstract | This paper proposes SaleNet - an end-to-end convolutional neural network (CNN) for sustained attention level evaluation using prefrontal electroencephalogram (EEG). A bias-driven pruning method is proposed together with group convolution, global average pooling (GAP), near-zero pruning, weight clustering and quantization for the model compression, achieving a total compression ratio of 183. 11x. The compressed SaleNet obtains a state-of-the-art subject-independent sustained attention level classification accuracy of 84.2% on the recorded 6-subject EEG database in this work. The SaleNet is implemented on a Artix-7 FPGA with a competitive power consumption of 0.11 W and an energy-efficiency of 8.19 GOps/w. |
---|---|
AbstractList | This paper proposes SaleNet - an end-to-end convolutional neural network (CNN) for sustained attention level evaluation using prefrontal electroencephalogram (EEG). A bias-driven pruning method is proposed together with group convolution, global average pooling (GAP), near-zero pruning, weight clustering and quantization for the model compression, achieving a total compression ratio of 183. 11x. The compressed SaleNet obtains a state-of-the-art subject-independent sustained attention level classification accuracy of 84.2% on the recorded 6-subject EEG database in this work. The SaleNet is implemented on a Artix-7 FPGA with a competitive power consumption of 0.11 W and an energy-efficiency of 8.19 GOps/w. |
Author | Tang, Zijian Zhang, Chao Lei, Jiaxin Zhang, Milin Bai, Shuo Xiao, Jiaxin Guo, Taoming Wang, Anhe |
Author_xml | – sequence: 1 givenname: Chao surname: Zhang fullname: Zhang, Chao organization: Tsinghua University,Department of Electronic Engineering – sequence: 2 givenname: Zijian surname: Tang fullname: Tang, Zijian organization: Tsinghua University,Department of Electronic Engineering – sequence: 3 givenname: Taoming surname: Guo fullname: Guo, Taoming organization: Tsinghua University,Department of Electronic Engineering – sequence: 4 givenname: Jiaxin surname: Lei fullname: Lei, Jiaxin organization: Tsinghua University,Department of Electronic Engineering – sequence: 5 givenname: Jiaxin surname: Xiao fullname: Xiao, Jiaxin organization: Tsinghua University,Department of Electronic Engineering – sequence: 6 givenname: Anhe surname: Wang fullname: Wang, Anhe organization: State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences – sequence: 7 givenname: Shuo surname: Bai fullname: Bai, Shuo organization: State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences – sequence: 8 givenname: Milin surname: Zhang fullname: Zhang, Milin email: zhangmilin@tsinghua.edu.cn organization: Tsinghua University,Department of Electronic Engineering |
BookMark | eNotkF1LwzAYhaMouM39Ai_MH0hN3jQf9W6Ubg7GvJhej9i8lUpMR5tu-O8duovDA-figXOm5CZ2EQl5FDwTghdP61252OXWWJUBB8iKQhoJ8orMC2OF1iq3uVXqmkxAKMuEAnVHpsPwxTlwrmFCPnYu4BbTM13Q0J3YoTthTzF6ljp2Bi23W-rqGgP2LnU9bc4ZxiG5NqKnLiWMqe0iDXjEQPHowuj-inFo4yetqtU9uW1cGHB-4Yy8L6u38oVtXlfrcrFhLXCZmDSu9o0xsoHcgamtAAtGgfRK1-Blo1EY63MhQKsCLHoPXnuTKywsnFfPyMO_t0XE_aFvv13_s79cIn8BFaNXbA |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ISCAS48785.2022.9937323 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9781665484855 1665484853 |
EISSN | 2158-1525 |
EndPage | 2308 |
ExternalDocumentID | 9937323 |
Genre | orig-research |
GrantInformation_xml | – fundername: Beijing Innovation Center for Future Chip funderid: 10.13039/501100012282 – fundername: National Key Research and Development Program of China funderid: 10.13039/501100012166 |
GroupedDBID | -~X 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i203t-37acdf773f24a27c812827523d56c2d3f6e178d411265928edd2d6d745e982323 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:27:03 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-37acdf773f24a27c812827523d56c2d3f6e178d411265928edd2d6d745e982323 |
PageCount | 5 |
ParticipantIDs | ieee_primary_9937323 |
PublicationCentury | 2000 |
PublicationDate | 2022-May-28 |
PublicationDateYYYYMMDD | 2022-05-28 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-May-28 day: 28 |
PublicationDecade | 2020 |
PublicationTitle | IEEE International Symposium on Circuits and Systems proceedings |
PublicationTitleAbbrev | ISCAS |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0020062 |
Score | 2.2125733 |
Snippet | This paper proposes SaleNet - an end-to-end convolutional neural network (CNN) for sustained attention level evaluation using prefrontal electroencephalogram... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 2304 |
SubjectTerms | Brain-machine interface (BMI) Convolution Convolutional neural network (CNN) Electroencephalography Field-programmable gate array (FPGA) Logic gates Model compression Neural networks Power demand Quantization (signal) Sustained attention level evaluation |
Title | SaleNet: A low-power end-to-end CNN accelerator for sustained attention level evaluation using EEG |
URI | https://ieeexplore.ieee.org/document/9937323 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bTnrxxyb-JgePpuvSJE29jbE5hRVhDnYbbfIi4miHdgj-9SZt3VQ8eGoolJT3Sr73-r7vPYSuJGdCGODEZwCEGZEQCwoR4T2lgAGHyHdq5EksxjN2P-fzBrreaGEAoCSfgeeWZS1f52rtfpV1HZYGNGiipk3cKq3WJrlyYsCav9Xzo-7ddNCf2mBccpsDUurVj_6YoVJCyGgPTb42r5gjL966SD318asv43_fbh91tmI9_LCBoQPUgOwQ7X7rM9hG6dTCQAzFDe7jZf5OVm40GoZMkyIn9oIHcYwTa7YllFV3bCNZ_FZJq0Bj14KzJEXipaMY4W2HcOxo8094OLztoNlo-DgYk3q4AnmmflDYgyVR2oRhYChLaKgs0Esa2rRUc6GoDoyAXig1cxIjHlEJWlMtdMis-6QNw4Ij1MryDI4R1qkJwJ4bVJmACZNE9sOQIKVWkRTa0BPUdtZarKr-GYvaUKd_3z5DO85jrkJP5TlqFa9ruLDAX6SXpcc_AWd2rgY |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gHtSLDzS-3YNHl8e-uvVGCAgKjQmQcCNld9YYCSVaYuKvd7dFUOPBUzdNmm1mmv1mOt83g9C1ElxKC4JUOQDhVsbEgUJIRE1r4CAgrHo1ci-S7SG_H4lRAd2stDAAkJHPoOyXWS3fJHrhf5VVPJYyyjbQpvBi3FyttUqvvBxwyeCqVcNKp9-o9104roTLAiktLx_-MUUlA5HWLup9bZ9zR17Ki3RS1h-_OjP-9_320OFarocfV0C0jwowO0A73zoNltCk74AggvQW1_E0eSdzPxwNw8yQNCHughtRhGNnuClkdXfsYln8lourwGDfhDOjReKpJxnhdY9w7InzT7jZvDtEw1Zz0GiT5XgF8kyrLHVHS6yNDQJmKY9poB3UKxq4xNQIqalhVkItUIZ7kZEIqQJjqJEm4M6BygVi7AgVZ8kMjhE2E8vAnRxUW8aljUP3aShQyuhQSWPpCSp5a43neQeN8dJQp3_fvkJb7UGvO-52oocztO295-v1VJ2jYvq6gAsXBqSTy8z7n6hCsU4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Symposium+on+Circuits+and+Systems+proceedings&rft.atitle=SaleNet%3A+A+low-power+end-to-end+CNN+accelerator+for+sustained+attention+level+evaluation+using+EEG&rft.au=Zhang%2C+Chao&rft.au=Tang%2C+Zijian&rft.au=Guo%2C+Taoming&rft.au=Lei%2C+Jiaxin&rft.date=2022-05-28&rft.pub=IEEE&rft.eissn=2158-1525&rft.spage=2304&rft.epage=2308&rft_id=info:doi/10.1109%2FISCAS48785.2022.9937323&rft.externalDocID=9937323 |