SaleNet: A low-power end-to-end CNN accelerator for sustained attention level evaluation using EEG

This paper proposes SaleNet - an end-to-end convolutional neural network (CNN) for sustained attention level evaluation using prefrontal electroencephalogram (EEG). A bias-driven pruning method is proposed together with group convolution, global average pooling (GAP), near-zero pruning, weight clust...

Full description

Saved in:
Bibliographic Details
Published inIEEE International Symposium on Circuits and Systems proceedings pp. 2304 - 2308
Main Authors Zhang, Chao, Tang, Zijian, Guo, Taoming, Lei, Jiaxin, Xiao, Jiaxin, Wang, Anhe, Bai, Shuo, Zhang, Milin
Format Conference Proceeding
LanguageEnglish
Published IEEE 28.05.2022
Subjects
Online AccessGet full text
ISSN2158-1525
DOI10.1109/ISCAS48785.2022.9937323

Cover

Loading…
Abstract This paper proposes SaleNet - an end-to-end convolutional neural network (CNN) for sustained attention level evaluation using prefrontal electroencephalogram (EEG). A bias-driven pruning method is proposed together with group convolution, global average pooling (GAP), near-zero pruning, weight clustering and quantization for the model compression, achieving a total compression ratio of 183. 11x. The compressed SaleNet obtains a state-of-the-art subject-independent sustained attention level classification accuracy of 84.2% on the recorded 6-subject EEG database in this work. The SaleNet is implemented on a Artix-7 FPGA with a competitive power consumption of 0.11 W and an energy-efficiency of 8.19 GOps/w.
AbstractList This paper proposes SaleNet - an end-to-end convolutional neural network (CNN) for sustained attention level evaluation using prefrontal electroencephalogram (EEG). A bias-driven pruning method is proposed together with group convolution, global average pooling (GAP), near-zero pruning, weight clustering and quantization for the model compression, achieving a total compression ratio of 183. 11x. The compressed SaleNet obtains a state-of-the-art subject-independent sustained attention level classification accuracy of 84.2% on the recorded 6-subject EEG database in this work. The SaleNet is implemented on a Artix-7 FPGA with a competitive power consumption of 0.11 W and an energy-efficiency of 8.19 GOps/w.
Author Tang, Zijian
Zhang, Chao
Lei, Jiaxin
Zhang, Milin
Bai, Shuo
Xiao, Jiaxin
Guo, Taoming
Wang, Anhe
Author_xml – sequence: 1
  givenname: Chao
  surname: Zhang
  fullname: Zhang, Chao
  organization: Tsinghua University,Department of Electronic Engineering
– sequence: 2
  givenname: Zijian
  surname: Tang
  fullname: Tang, Zijian
  organization: Tsinghua University,Department of Electronic Engineering
– sequence: 3
  givenname: Taoming
  surname: Guo
  fullname: Guo, Taoming
  organization: Tsinghua University,Department of Electronic Engineering
– sequence: 4
  givenname: Jiaxin
  surname: Lei
  fullname: Lei, Jiaxin
  organization: Tsinghua University,Department of Electronic Engineering
– sequence: 5
  givenname: Jiaxin
  surname: Xiao
  fullname: Xiao, Jiaxin
  organization: Tsinghua University,Department of Electronic Engineering
– sequence: 6
  givenname: Anhe
  surname: Wang
  fullname: Wang, Anhe
  organization: State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences
– sequence: 7
  givenname: Shuo
  surname: Bai
  fullname: Bai, Shuo
  organization: State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences
– sequence: 8
  givenname: Milin
  surname: Zhang
  fullname: Zhang, Milin
  email: zhangmilin@tsinghua.edu.cn
  organization: Tsinghua University,Department of Electronic Engineering
BookMark eNotkF1LwzAYhaMouM39Ai_MH0hN3jQf9W6Ubg7GvJhej9i8lUpMR5tu-O8duovDA-figXOm5CZ2EQl5FDwTghdP61252OXWWJUBB8iKQhoJ8orMC2OF1iq3uVXqmkxAKMuEAnVHpsPwxTlwrmFCPnYu4BbTM13Q0J3YoTthTzF6ljp2Bi23W-rqGgP2LnU9bc4ZxiG5NqKnLiWMqe0iDXjEQPHowuj-inFo4yetqtU9uW1cGHB-4Yy8L6u38oVtXlfrcrFhLXCZmDSu9o0xsoHcgamtAAtGgfRK1-Blo1EY63MhQKsCLHoPXnuTKywsnFfPyMO_t0XE_aFvv13_s79cIn8BFaNXbA
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ISCAS48785.2022.9937323
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781665484855
1665484853
EISSN 2158-1525
EndPage 2308
ExternalDocumentID 9937323
Genre orig-research
GrantInformation_xml – fundername: Beijing Innovation Center for Future Chip
  funderid: 10.13039/501100012282
– fundername: National Key Research and Development Program of China
  funderid: 10.13039/501100012166
GroupedDBID -~X
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i203t-37acdf773f24a27c812827523d56c2d3f6e178d411265928edd2d6d745e982323
IEDL.DBID RIE
IngestDate Wed Aug 27 02:27:03 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-37acdf773f24a27c812827523d56c2d3f6e178d411265928edd2d6d745e982323
PageCount 5
ParticipantIDs ieee_primary_9937323
PublicationCentury 2000
PublicationDate 2022-May-28
PublicationDateYYYYMMDD 2022-05-28
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-May-28
  day: 28
PublicationDecade 2020
PublicationTitle IEEE International Symposium on Circuits and Systems proceedings
PublicationTitleAbbrev ISCAS
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020062
Score 2.2125733
Snippet This paper proposes SaleNet - an end-to-end convolutional neural network (CNN) for sustained attention level evaluation using prefrontal electroencephalogram...
SourceID ieee
SourceType Publisher
StartPage 2304
SubjectTerms Brain-machine interface (BMI)
Convolution
Convolutional neural network (CNN)
Electroencephalography
Field-programmable gate array (FPGA)
Logic gates
Model compression
Neural networks
Power demand
Quantization (signal)
Sustained attention level evaluation
Title SaleNet: A low-power end-to-end CNN accelerator for sustained attention level evaluation using EEG
URI https://ieeexplore.ieee.org/document/9937323
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bTnrxxyb-JgePpuvSJE29jbE5hRVhDnYbbfIi4miHdgj-9SZt3VQ8eGoolJT3Sr73-r7vPYSuJGdCGODEZwCEGZEQCwoR4T2lgAGHyHdq5EksxjN2P-fzBrreaGEAoCSfgeeWZS1f52rtfpV1HZYGNGiipk3cKq3WJrlyYsCav9Xzo-7ddNCf2mBccpsDUurVj_6YoVJCyGgPTb42r5gjL966SD318asv43_fbh91tmI9_LCBoQPUgOwQ7X7rM9hG6dTCQAzFDe7jZf5OVm40GoZMkyIn9oIHcYwTa7YllFV3bCNZ_FZJq0Bj14KzJEXipaMY4W2HcOxo8094OLztoNlo-DgYk3q4AnmmflDYgyVR2oRhYChLaKgs0Esa2rRUc6GoDoyAXig1cxIjHlEJWlMtdMis-6QNw4Ij1MryDI4R1qkJwJ4bVJmACZNE9sOQIKVWkRTa0BPUdtZarKr-GYvaUKd_3z5DO85jrkJP5TlqFa9ruLDAX6SXpcc_AWd2rgY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gHtSLDzS-3YNHl8e-uvVGCAgKjQmQcCNld9YYCSVaYuKvd7dFUOPBUzdNmm1mmv1mOt83g9C1ElxKC4JUOQDhVsbEgUJIRE1r4CAgrHo1ci-S7SG_H4lRAd2stDAAkJHPoOyXWS3fJHrhf5VVPJYyyjbQpvBi3FyttUqvvBxwyeCqVcNKp9-o9104roTLAiktLx_-MUUlA5HWLup9bZ9zR17Ki3RS1h-_OjP-9_320OFarocfV0C0jwowO0A73zoNltCk74AggvQW1_E0eSdzPxwNw8yQNCHughtRhGNnuClkdXfsYln8lourwGDfhDOjReKpJxnhdY9w7InzT7jZvDtEw1Zz0GiT5XgF8kyrLHVHS6yNDQJmKY9poB3UKxq4xNQIqalhVkItUIZ7kZEIqQJjqJEm4M6BygVi7AgVZ8kMjhE2E8vAnRxUW8aljUP3aShQyuhQSWPpCSp5a43neQeN8dJQp3_fvkJb7UGvO-52oocztO295-v1VJ2jYvq6gAsXBqSTy8z7n6hCsU4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Symposium+on+Circuits+and+Systems+proceedings&rft.atitle=SaleNet%3A+A+low-power+end-to-end+CNN+accelerator+for+sustained+attention+level+evaluation+using+EEG&rft.au=Zhang%2C+Chao&rft.au=Tang%2C+Zijian&rft.au=Guo%2C+Taoming&rft.au=Lei%2C+Jiaxin&rft.date=2022-05-28&rft.pub=IEEE&rft.eissn=2158-1525&rft.spage=2304&rft.epage=2308&rft_id=info:doi/10.1109%2FISCAS48785.2022.9937323&rft.externalDocID=9937323