NDDR-CNN: Layerwise Feature Fusing in Multi-Task CNNs by Neural Discriminative Dimensionality Reduction

In this paper, we propose a novel Convolutional Neural Network (CNN) structure for general-purpose multi-task learning (MTL), which enables automatic feature fusing at every layer from different tasks. This is in contrast with the most widely used MTL CNN structures which empirically or heuristicall...

Full description

Saved in:
Bibliographic Details
Published in2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) pp. 3200 - 3209
Main Authors Gao, Yuan, Ma, Jiayi, Zhao, Mingbo, Liu, Wei, Yuille, Alan L.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we propose a novel Convolutional Neural Network (CNN) structure for general-purpose multi-task learning (MTL), which enables automatic feature fusing at every layer from different tasks. This is in contrast with the most widely used MTL CNN structures which empirically or heuristically share features on some specific layers (e.g., share all the features except the last convolutional layer). The proposed layerwise feature fusing scheme is formulated by combining existing CNN components in a novel way, with clear mathematical interpretability as discriminative dimensionality reduction, which is referred to as Neural Discriminative Dimensionality Reduction (NDDR). Specifically, we first concatenate features with the same spatial resolution from different tasks according to their channel dimension. Then, we show that the discriminative dimensionality reduction can be fulfilled by 1×1 Convolution, Batch Normalization, and Weight Decay in one CNN. The use of existing CNN components ensures the end-to-end training and the extensibility of the proposed NDDR layer to various state-of-the-art CNN architectures in a "plug-and-play" manner. The detailed ablation analysis shows that the proposed NDDR layer is easy to train and also robust to different hyperparameters. Experiments on different task sets with various base network architectures demonstrate the promising performance and desirable generalizability of our proposed method. The code of our paper is available at https://github.com/ethanygao/NDDR-CNN.
AbstractList In this paper, we propose a novel Convolutional Neural Network (CNN) structure for general-purpose multi-task learning (MTL), which enables automatic feature fusing at every layer from different tasks. This is in contrast with the most widely used MTL CNN structures which empirically or heuristically share features on some specific layers (e.g., share all the features except the last convolutional layer). The proposed layerwise feature fusing scheme is formulated by combining existing CNN components in a novel way, with clear mathematical interpretability as discriminative dimensionality reduction, which is referred to as Neural Discriminative Dimensionality Reduction (NDDR). Specifically, we first concatenate features with the same spatial resolution from different tasks according to their channel dimension. Then, we show that the discriminative dimensionality reduction can be fulfilled by 1×1 Convolution, Batch Normalization, and Weight Decay in one CNN. The use of existing CNN components ensures the end-to-end training and the extensibility of the proposed NDDR layer to various state-of-the-art CNN architectures in a "plug-and-play" manner. The detailed ablation analysis shows that the proposed NDDR layer is easy to train and also robust to different hyperparameters. Experiments on different task sets with various base network architectures demonstrate the promising performance and desirable generalizability of our proposed method. The code of our paper is available at https://github.com/ethanygao/NDDR-CNN.
Author Gao, Yuan
Ma, Jiayi
Yuille, Alan L.
Zhao, Mingbo
Liu, Wei
Author_xml – sequence: 1
  givenname: Yuan
  surname: Gao
  fullname: Gao, Yuan
  organization: Tencent AI Lab
– sequence: 2
  givenname: Jiayi
  surname: Ma
  fullname: Ma, Jiayi
  organization: Wuhan Univ
– sequence: 3
  givenname: Mingbo
  surname: Zhao
  fullname: Zhao, Mingbo
  organization: Donghua Univ
– sequence: 4
  givenname: Wei
  surname: Liu
  fullname: Liu, Wei
  organization: Johns Hopkins Univ
– sequence: 5
  givenname: Alan L.
  surname: Yuille
  fullname: Yuille, Alan L.
  organization: Tencent
BookMark eNotjktLw0AYRUdRsNauXbiZP5A6j8zLnaRWhRilVLdlMvmmDKZTySRK_r0BXR0O93K5l-gsHiMgdE3JklJibouPt82SEWqWhHDOTtDCKE0V05Qzw_UpmjGhRKaIEhdokVKoiWCEKG70DO2r1WqTFVV1h0s7QvcTEuA12H7oJg4pxD0OEb8MbR-yrU2feOomXI-4gqGzLV6F5LpwCNH24RsmPUBM4RhtG_oRb6AZXD_pFTr3tk2w-Occva8ftsVTVr4-Phf3ZRYY4X3Gcw-C60YSsI5KL4hvpoBBw0ESxVzNnLMsVz6vveVOSBAyp-Ap17WThs_Rzd9uAIDd1_TMduNOG5FzJvkvyK1ZdA
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2019.00332
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728132938
1728132932
EISSN 2575-7075
EndPage 3209
ExternalDocumentID 8954326
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i203t-34fe538d60eac16f50fd2032ed3e6072cb2cca247f4bfa3c56e5641ef138bc693
IEDL.DBID RIE
IngestDate Wed Jun 26 19:27:16 EDT 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-34fe538d60eac16f50fd2032ed3e6072cb2cca247f4bfa3c56e5641ef138bc693
PageCount 10
ParticipantIDs ieee_primary_8954326
PublicationCentury 2000
PublicationDate 2019-June
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-June
PublicationDecade 2010
PublicationTitle 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
PublicationTitleAbbrev CVPR
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib052007398
ssib042469789
Score 2.5942266
Snippet In this paper, we propose a novel Convolutional Neural Network (CNN) structure for general-purpose multi-task learning (MTL), which enables automatic feature...
SourceID ieee
SourceType Publisher
StartPage 3200
SubjectTerms Representation Learning
Statistical Learning
Title NDDR-CNN: Layerwise Feature Fusing in Multi-Task CNNs by Neural Discriminative Dimensionality Reduction
URI https://ieeexplore.ieee.org/document/8954326
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0AJ09qwPidPXh0od3dbluvICFGGkLAcCPbdkoaFAy0Mfrr3WkLEuPBUz_Sw2ZfM_OmffOGkDtwHe0IDkyJkDOpecK0Ya4MhOsnYFuRLkyShoEaTOXTzJnVyP2-FwYACvEZtPG0-Jcfr6McP5V1PN-Rhm7USd31_bJXa_fuSG7qvAPndHQTcoXvVW4-tuV3ui-jMWq50KBS4LiRg3EqRTbpH5Phbh2liGTZzrOwHX39smj870JPSOunb4-O9hnplNRg1SSLoNcbs24QPNBnbQj2R7oFiswv35gj6t4XNF3RohOXTfR2Sc2zWxp-UjTu0K-0l2JoQckMhkZz-Yai94rB0zF6vyK6LTLtP066A1aNV2Apt0TGhEzAhLtYWSb42ipxrCTGeeoQC1CWy6OQG3i5dBMZJlpEjgJHSRsSW3hhpHxxRhqr9QrOCTVlhmFSfmzKMRN5LU87ETeQ2DIOubZj94I0cZPm76WDxrzan8u_b1-RI4SpFGRdk0a2yeHGpP4svC0w_wZDhK05
link.rule.ids 310,311,783,787,792,793,799,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0gHvSkBozf7sGjC-1-tNQrSFChIQQMN7LbTk2DggEao7_enfIhMR48ddvsYbOvmX3TvnlDyA34SivBgXnCcCY1T5i2zJWB8IMEXCfSuUlSJ_RaA_k4VMMCud3UwgBALj6DCg7zf_nxNMrwU1m1Fihp6cYO2VXIK5bVWuu3R3Kb6W15p6OfkC-C2srPx3WCav2520M1F1pUCmw4stVQJT9Pmgeks17JUkYyrmQLU4m-fpk0_neph6T8U7lHu5sz6YgUYFIiL2Gj0WP1MLyjbW0p9kc6B4rcL5vZKyrfX2g6oXktLuvr-ZjauXNqPilad-hX2kgxuKBoBoOjvX1D2fuKw9Meur8ivmUyaN736y22arDAUu6IBRMyARvwYs-x4df1EuUkMXZUh1iA5_g8MtwCzKWfSJNoESkPlCddSFxRM5EXiGNSnEwncEKoTTQslwpim5DZ2OvUtIq4hcSVseHajf1TUsJNGr0vPTRGq_05-_vxNdlr9TvtUfshfDon-wjZUp51QYqLWQaXlggszFWO_zeFfLCG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=NDDR-CNN%3A+Layerwise+Feature+Fusing+in+Multi-Task+CNNs+by+Neural+Discriminative+Dimensionality+Reduction&rft.au=Gao%2C+Yuan&rft.au=Ma%2C+Jiayi&rft.au=Zhao%2C+Mingbo&rft.au=Liu%2C+Wei&rft.date=2019-06-01&rft.pub=IEEE&rft.eissn=2575-7075&rft.spage=3200&rft.epage=3209&rft_id=info:doi/10.1109%2FCVPR.2019.00332&rft.externalDocID=8954326