Effective Distribution of Local Intensity Gradient Technique for View Invariant Gait Recognition

The proposed paper investigates the effectiveness of view invariance in gait recognition by implementing HOG behavioral feature extraction technique on CASIA-B and CMU MoBo gait database in which standard HOG (RHOG), circular HOG and MHOG are considered for feature extraction. The effectiveness of e...

Full description

Saved in:
Bibliographic Details
Published in2019 2nd International Conference on Intelligent Communication and Computational Techniques (ICCT) pp. 187 - 191
Main Authors Rayangoudar, Tejas.K., Nagaraj, H. C.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2019
Subjects
Online AccessGet full text
DOI10.1109/ICCT46177.2019.8968784

Cover

Loading…
Abstract The proposed paper investigates the effectiveness of view invariance in gait recognition by implementing HOG behavioral feature extraction technique on CASIA-B and CMU MoBo gait database in which standard HOG (RHOG), circular HOG and MHOG are considered for feature extraction. The effectiveness of each feature is analyzed and compared using SVM based classifier on gait detection of the subject for changing view angle. 25 subjects are considered with 10 different view angles for each subject. Classification is done based on the influence of individual and combination of above mentioned features. In spatial domain, although the RHOG gives better precision in finding the gait with normal view angle, but when the view angles are changed with respect to binning angles of histograms, the CHOG feature gives up to 97% better and consistent classification rate against RHOG. Further MHOG feature analysis is considered to improve classification results up to 100%, thus addressing the rotational invariance problem. The work carried out shows better gait recognition results than the previous researchers for all the view angles.
AbstractList The proposed paper investigates the effectiveness of view invariance in gait recognition by implementing HOG behavioral feature extraction technique on CASIA-B and CMU MoBo gait database in which standard HOG (RHOG), circular HOG and MHOG are considered for feature extraction. The effectiveness of each feature is analyzed and compared using SVM based classifier on gait detection of the subject for changing view angle. 25 subjects are considered with 10 different view angles for each subject. Classification is done based on the influence of individual and combination of above mentioned features. In spatial domain, although the RHOG gives better precision in finding the gait with normal view angle, but when the view angles are changed with respect to binning angles of histograms, the CHOG feature gives up to 97% better and consistent classification rate against RHOG. Further MHOG feature analysis is considered to improve classification results up to 100%, thus addressing the rotational invariance problem. The work carried out shows better gait recognition results than the previous researchers for all the view angles.
Author Nagaraj, H. C.
Rayangoudar, Tejas.K.
Author_xml – sequence: 1
  givenname: Tejas.K.
  surname: Rayangoudar
  fullname: Rayangoudar, Tejas.K.
  organization: K.L.E. Institute of Technology,Dept. of Electronics and Communication,Hubli,Karnataka,India,580030
– sequence: 2
  givenname: H. C.
  surname: Nagaraj
  fullname: Nagaraj, H. C.
  organization: NITTE Meenakshi Institute of Technology,Bangalore,Karnataka,India,560064
BookMark eNotj99KwzAYxSPohZs-gSB5gdamyfLnUursCgVBqrczbb_oBzPRNJvs7a24q3PgHH6csyDnPngg5JYVOWOFuWuqqhOSKZWXBTO5NlIrLc7IgqlSM6YYM5fkbe0cDAkPQB9wShH7fcLgaXC0DYPd0cYn8BOmI62jHRF8oh0MHx6_90BdiPQV4WduHWxEO4e1xUSfYQjvHv9IV-TC2d0E1yddkpfHdVdtsvapbqr7NsOy4CnjQo58tPNIWwD0zhgwXAvBOVvNxmo9KGl6ISSMhXXcsdFYI1dqHJxwveFLcvPPRQDYfkX8tPG4PZ3mv8H0U0E
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCT46177.2019.8968784
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728117119
9781728117119
EndPage 191
ExternalDocumentID 8968784
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-346d3da896a0eebf99e938443315938a88c769b446ed0af3f1d9a9657dcf4fb93
IEDL.DBID RIE
IngestDate Wed Aug 27 07:38:37 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-346d3da896a0eebf99e938443315938a88c769b446ed0af3f1d9a9657dcf4fb93
PageCount 5
ParticipantIDs ieee_primary_8968784
PublicationCentury 2000
PublicationDate 2019-Sept.
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-Sept.
PublicationDecade 2010
PublicationTitle 2019 2nd International Conference on Intelligent Communication and Computational Techniques (ICCT)
PublicationTitleAbbrev INTELCCT
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.700486
Snippet The proposed paper investigates the effectiveness of view invariance in gait recognition by implementing HOG behavioral feature extraction technique on CASIA-B...
SourceID ieee
SourceType Publisher
StartPage 187
SubjectTerms Feature extraction
Gait recognition
Histogram of Oriented Grading (HOG)
Histograms
View Invariance
Title Effective Distribution of Local Intensity Gradient Technique for View Invariant Gait Recognition
URI https://ieeexplore.ieee.org/document/8968784
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA3bTp5UNvE3OXg0W7ek-XGublOciGyy20zaBIbQysgU_ev90nYTxYO3UAINX0JfX_ve-xC6GASdDhsYAuChCGPOEqWNIdxSoXUIyCq1OZN7Pp6x23k8b6DLrRfGWluKz2w3DMt_-VmRrsOnsp5UXArJmqgJxK3yatWm336kejdJMmUAyCIItuAEVJN_dE0pQWO4iyab21VakZfu2ptu-vkrifG_69lDnW97Hn7YAs8-ati8jZ6rHGJ4eOGrEIZb97HChcN3Aa9wLVb3H3i0KnVeHk83Aa4YXl3x09K-w6w3YM9QbjzSS48fN_qiIu-g2fB6moxJ3T6BLAcR9YQyntFMwyJ1ZK1xSllFJQsWqRgGWspUcGWAD9os0o66fqa04rHIUsecUfQAtfIit4cIa8VSGenQ_M8xBRxNABMxwsmYCyBY8RFqh-osXquEjEVdmOO_L5-gnbBDlVLrFLX8am3PANq9OS_39Au-OqWs
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGP2Y86AnlU38bQ4e7dataZOcp_uh2xDpZLeZtAkUoZXRKfrX-6XtJooHb6EEGr6Evr72vfcBXHWtTod2lYPgIRxKjXaEVMoJtMektAFZhTZnMg2GM3o39-c1uN54YbTWhfhMt-yw-JcfZ9HKfiprcxFwxukWbCPuU1G6tSrbb8cV7VGvF1KEZGYlW3gGyuk_-qYUsNHfg8n6hqVa5KW1ylUr-vyVxfjfFe1D89ugRx420HMANZ024LlMIsbHF7mxcbhVJyuSGTK2iEUquXr-QQbLQumVk3Ad4Urw5ZU8JfodZ70hf8aCk4FMcvK4VhhlaRNm_duwN3SqBgpO0nW93PFoEHuxxEVKV2tlhNDC49SapHwcSM4jFgiFjFDHrjSe6cRCisBncWSoUcI7hHqapfoIiBQ04q607f8MFcjSGHIRxQz3A4YUyz-Ghq3O4rXMyFhUhTn5-_Il7AzDyXgxHk3vT2HX7lap2zqDer5c6XME-lxdFPv7BZ3bqPw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+2nd+International+Conference+on+Intelligent+Communication+and+Computational+Techniques+%28ICCT%29&rft.atitle=Effective+Distribution+of+Local+Intensity+Gradient+Technique+for+View+Invariant+Gait+Recognition&rft.au=Rayangoudar%2C+Tejas.K.&rft.au=Nagaraj%2C+H.+C.&rft.date=2019-09-01&rft.pub=IEEE&rft.spage=187&rft.epage=191&rft_id=info:doi/10.1109%2FICCT46177.2019.8968784&rft.externalDocID=8968784