Effective Distribution of Local Intensity Gradient Technique for View Invariant Gait Recognition
The proposed paper investigates the effectiveness of view invariance in gait recognition by implementing HOG behavioral feature extraction technique on CASIA-B and CMU MoBo gait database in which standard HOG (RHOG), circular HOG and MHOG are considered for feature extraction. The effectiveness of e...
Saved in:
Published in | 2019 2nd International Conference on Intelligent Communication and Computational Techniques (ICCT) pp. 187 - 191 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.09.2019
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ICCT46177.2019.8968784 |
Cover
Loading…
Abstract | The proposed paper investigates the effectiveness of view invariance in gait recognition by implementing HOG behavioral feature extraction technique on CASIA-B and CMU MoBo gait database in which standard HOG (RHOG), circular HOG and MHOG are considered for feature extraction. The effectiveness of each feature is analyzed and compared using SVM based classifier on gait detection of the subject for changing view angle. 25 subjects are considered with 10 different view angles for each subject. Classification is done based on the influence of individual and combination of above mentioned features. In spatial domain, although the RHOG gives better precision in finding the gait with normal view angle, but when the view angles are changed with respect to binning angles of histograms, the CHOG feature gives up to 97% better and consistent classification rate against RHOG. Further MHOG feature analysis is considered to improve classification results up to 100%, thus addressing the rotational invariance problem. The work carried out shows better gait recognition results than the previous researchers for all the view angles. |
---|---|
AbstractList | The proposed paper investigates the effectiveness of view invariance in gait recognition by implementing HOG behavioral feature extraction technique on CASIA-B and CMU MoBo gait database in which standard HOG (RHOG), circular HOG and MHOG are considered for feature extraction. The effectiveness of each feature is analyzed and compared using SVM based classifier on gait detection of the subject for changing view angle. 25 subjects are considered with 10 different view angles for each subject. Classification is done based on the influence of individual and combination of above mentioned features. In spatial domain, although the RHOG gives better precision in finding the gait with normal view angle, but when the view angles are changed with respect to binning angles of histograms, the CHOG feature gives up to 97% better and consistent classification rate against RHOG. Further MHOG feature analysis is considered to improve classification results up to 100%, thus addressing the rotational invariance problem. The work carried out shows better gait recognition results than the previous researchers for all the view angles. |
Author | Nagaraj, H. C. Rayangoudar, Tejas.K. |
Author_xml | – sequence: 1 givenname: Tejas.K. surname: Rayangoudar fullname: Rayangoudar, Tejas.K. organization: K.L.E. Institute of Technology,Dept. of Electronics and Communication,Hubli,Karnataka,India,580030 – sequence: 2 givenname: H. C. surname: Nagaraj fullname: Nagaraj, H. C. organization: NITTE Meenakshi Institute of Technology,Bangalore,Karnataka,India,560064 |
BookMark | eNotj99KwzAYxSPohZs-gSB5gdamyfLnUursCgVBqrczbb_oBzPRNJvs7a24q3PgHH6csyDnPngg5JYVOWOFuWuqqhOSKZWXBTO5NlIrLc7IgqlSM6YYM5fkbe0cDAkPQB9wShH7fcLgaXC0DYPd0cYn8BOmI62jHRF8oh0MHx6_90BdiPQV4WduHWxEO4e1xUSfYQjvHv9IV-TC2d0E1yddkpfHdVdtsvapbqr7NsOy4CnjQo58tPNIWwD0zhgwXAvBOVvNxmo9KGl6ISSMhXXcsdFYI1dqHJxwveFLcvPPRQDYfkX8tPG4PZ3mv8H0U0E |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICCT46177.2019.8968784 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1728117119 9781728117119 |
EndPage | 191 |
ExternalDocumentID | 8968784 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i203t-346d3da896a0eebf99e938443315938a88c769b446ed0af3f1d9a9657dcf4fb93 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 07:38:37 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-346d3da896a0eebf99e938443315938a88c769b446ed0af3f1d9a9657dcf4fb93 |
PageCount | 5 |
ParticipantIDs | ieee_primary_8968784 |
PublicationCentury | 2000 |
PublicationDate | 2019-Sept. |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-Sept. |
PublicationDecade | 2010 |
PublicationTitle | 2019 2nd International Conference on Intelligent Communication and Computational Techniques (ICCT) |
PublicationTitleAbbrev | INTELCCT |
PublicationYear | 2019 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.700486 |
Snippet | The proposed paper investigates the effectiveness of view invariance in gait recognition by implementing HOG behavioral feature extraction technique on CASIA-B... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 187 |
SubjectTerms | Feature extraction Gait recognition Histogram of Oriented Grading (HOG) Histograms View Invariance |
Title | Effective Distribution of Local Intensity Gradient Technique for View Invariant Gait Recognition |
URI | https://ieeexplore.ieee.org/document/8968784 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA3bTp5UNvE3OXg0W7ek-XGublOciGyy20zaBIbQysgU_ev90nYTxYO3UAINX0JfX_ve-xC6GASdDhsYAuChCGPOEqWNIdxSoXUIyCq1OZN7Pp6x23k8b6DLrRfGWluKz2w3DMt_-VmRrsOnsp5UXArJmqgJxK3yatWm336kejdJMmUAyCIItuAEVJN_dE0pQWO4iyab21VakZfu2ptu-vkrifG_69lDnW97Hn7YAs8-ati8jZ6rHGJ4eOGrEIZb97HChcN3Aa9wLVb3H3i0KnVeHk83Aa4YXl3x09K-w6w3YM9QbjzSS48fN_qiIu-g2fB6moxJ3T6BLAcR9YQyntFMwyJ1ZK1xSllFJQsWqRgGWspUcGWAD9os0o66fqa04rHIUsecUfQAtfIit4cIa8VSGenQ_M8xBRxNABMxwsmYCyBY8RFqh-osXquEjEVdmOO_L5-gnbBDlVLrFLX8am3PANq9OS_39Au-OqWs |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGP2Y86AnlU38bQ4e7dataZOcp_uh2xDpZLeZtAkUoZXRKfrX-6XtJooHb6EEGr6Evr72vfcBXHWtTod2lYPgIRxKjXaEVMoJtMektAFZhTZnMg2GM3o39-c1uN54YbTWhfhMt-yw-JcfZ9HKfiprcxFwxukWbCPuU1G6tSrbb8cV7VGvF1KEZGYlW3gGyuk_-qYUsNHfg8n6hqVa5KW1ylUr-vyVxfjfFe1D89ugRx420HMANZ024LlMIsbHF7mxcbhVJyuSGTK2iEUquXr-QQbLQumVk3Ad4Urw5ZU8JfodZ70hf8aCk4FMcvK4VhhlaRNm_duwN3SqBgpO0nW93PFoEHuxxEVKV2tlhNDC49SapHwcSM4jFgiFjFDHrjSe6cRCisBncWSoUcI7hHqapfoIiBQ04q607f8MFcjSGHIRxQz3A4YUyz-Ghq3O4rXMyFhUhTn5-_Il7AzDyXgxHk3vT2HX7lap2zqDer5c6XME-lxdFPv7BZ3bqPw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+2nd+International+Conference+on+Intelligent+Communication+and+Computational+Techniques+%28ICCT%29&rft.atitle=Effective+Distribution+of+Local+Intensity+Gradient+Technique+for+View+Invariant+Gait+Recognition&rft.au=Rayangoudar%2C+Tejas.K.&rft.au=Nagaraj%2C+H.+C.&rft.date=2019-09-01&rft.pub=IEEE&rft.spage=187&rft.epage=191&rft_id=info:doi/10.1109%2FICCT46177.2019.8968784&rft.externalDocID=8968784 |