Ditto: Building Digital Twins of Articulated Objects from Interaction
Digitizing physical objects into the virtual world has the potential to unlock new research and applications in embodied AI and mixed reality. This work focuses on recreating interactive digital twins of real-world articulated objects, which can be directly imported into virtual environments. We int...
Saved in:
Published in | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 5606 - 5616 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Digitizing physical objects into the virtual world has the potential to unlock new research and applications in embodied AI and mixed reality. This work focuses on recreating interactive digital twins of real-world articulated objects, which can be directly imported into virtual environments. We introduce Ditto to learn articulation model estimation and 3D geometry reconstruction of an articulated object through interactive perception. Given a pair of visual observations of an articulated object before and after interaction, Ditto reconstructs part-level geometry and estimates the articulation model of the object. We employ implicit neural representations for joint geometry and articulation modeling. Our experiments show that Ditto effectively builds digital twins of articulated objects in a category-agnostic way. We also apply Ditto to real-world objects and deploy the recreated digital twins in physical simulation. Code and additional results are available at https://ut-austin-rpl.github.io/Ditto/ |
---|---|
AbstractList | Digitizing physical objects into the virtual world has the potential to unlock new research and applications in embodied AI and mixed reality. This work focuses on recreating interactive digital twins of real-world articulated objects, which can be directly imported into virtual environments. We introduce Ditto to learn articulation model estimation and 3D geometry reconstruction of an articulated object through interactive perception. Given a pair of visual observations of an articulated object before and after interaction, Ditto reconstructs part-level geometry and estimates the articulation model of the object. We employ implicit neural representations for joint geometry and articulation modeling. Our experiments show that Ditto effectively builds digital twins of articulated objects in a category-agnostic way. We also apply Ditto to real-world objects and deploy the recreated digital twins in physical simulation. Code and additional results are available at https://ut-austin-rpl.github.io/Ditto/ |
Author | Zhu, Yuke Jiang, Zhenyu Hsu, Cheng-Chun |
Author_xml | – sequence: 1 givenname: Zhenyu surname: Jiang fullname: Jiang, Zhenyu organization: The University of Texas at Austin,Department of Computer Science – sequence: 2 givenname: Cheng-Chun surname: Hsu fullname: Hsu, Cheng-Chun organization: The University of Texas at Austin,Department of Computer Science – sequence: 3 givenname: Yuke surname: Zhu fullname: Zhu, Yuke organization: The University of Texas at Austin,Department of Computer Science |
BookMark | eNotzNFOwjAUgOFqNBGQJ9CLvsCw7Wm71jscqCQkGIPekrY7JSVjM1uJ4e010av_6vvH5KrtWiTknrMZ58w-VJ9v70poY2aCCTFjTCm4IGOutZLaSg2XZMSZhkJbbm_IdBgOjDEQnGtrRmS5SDl3j_TplJo6tXu6SPuUXUO336kdaBfpvM8pnBqXsaYbf8CQBxr77khXbcbehZy69pZcR9cMOP3vhHw8L7fVa7HevKyq-bpIgkEuQCpQEuvomSm14gg-eGnQhwhgYhQmylqJUkRuo6_Bo-HWCWW9jyCDhQm5-_smRNx99eno-vPOmtL-IvgBCsRODw |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR52688.2022.00553 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 1665469463 9781665469463 |
EISSN | 1063-6919 |
EndPage | 5616 |
ExternalDocumentID | 9879272 |
Genre | orig-research |
GrantInformation_xml | – fundername: NSF grantid: CNS-1955523 funderid: 10.13039/100000001 |
GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i203t-345354edfb087651e3bcb48ebcf338ff28f4d5272f19fbd3be819a259bbf34c93 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:15:10 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-345354edfb087651e3bcb48ebcf338ff28f4d5272f19fbd3be819a259bbf34c93 |
PageCount | 11 |
ParticipantIDs | ieee_primary_9879272 |
PublicationCentury | 2000 |
PublicationDate | 2022-June |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-June |
PublicationDecade | 2020 |
PublicationTitle | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003211698 |
Score | 2.5156817 |
Snippet | Digitizing physical objects into the virtual world has the potential to unlock new research and applications in embodied AI and mixed reality. This work... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 5606 |
SubjectTerms | 3D from multi-view and sensors; Physics-based vision and shape-from-X; Representation learning Buildings Estimation Geometry Solid modeling Three-dimensional displays Virtual environments Visualization |
Title | Ditto: Building Digital Twins of Articulated Objects from Interaction |
URI | https://ieeexplore.ieee.org/document/9879272 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zJ09TN_E3OXg0W9ckbeNN58YQpkM22W00v6QIrWwdgn-9L2mdIh68lVwakibvfa_v-z6ELuEj4UlANYkgdyBMJIokLI2IU9GRYRwJ7e2AJg_ReM7uF3zRQFdbLowxxjefma579P_ydaE2rlTWA3wswhgu3B0AbhVXa1tPoYBkIpHU7Lh-IHqD5-mTEzNxDVyhk-XkzgH5h4eKDyGjFpp8vbzqHHntbkrZVR-_dBn_O7s91Pkm6-HpNgzto4bJD1Crzi5xfXbXbTS8y8qyuMa3tRE2vstenGMInr1n-RoXFt-svBIHZJ8aP0pXoFljRz_BvmxYMSA6aD4azgZjUpsokCwMaEko45Qzo6104nO8b6hUkiVGKgvo1NowsUxzmLftCys1lQZyhBRAkZSWMiXoIWrmRW6OEKaxgfQoSOFgabhfVRrFTnxeUi2Ukjo8Rm23Ksu3SidjWS_Iyd_Dp2jX7UvVdnWGmuVqY84hwJfywu_sJzP9pJ4 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED1VZYCpQIv4xgMjaZPYTmI26IcKtKVCLepW1V8oQkpQmwqJX4-dhIIQA1vkJZYd-95d7r0HcGk-Ehq5WDqBwQ4OYZFwIrIIHKuiw_0wYDK3AxqOgv6U3M_orAJXGy6MUipvPlNN-5j_y5epWNtSWcvkx8wPzYW7ZeI-9Qq21qaigk0uE7Co5Md5Lmu1n8dPVs7EtnD5VpiTWg_kHy4qeRDp1WD49fqid-S1uc54U3z8Umb87_x2ofFN10PjTSDag4pK9qFW4ktUnt5VHbqdOMvSa3RbWmGjTvxiPUPQ5D1OVijV6GaZa3EY_CnRI7clmhWyBBSUFw4LDkQDpr3upN13ShsFJ_ZdnDmYUEyJkppb-TnqKcwFJ5HiQpv8VGs_0kRSM2_tMc0l5sqghIVJizjXmAiGD6CapIk6BIRDZQCSuzBHS5obViyC0MrPcyyZEFz6R1C3qzJ_K5Qy5uWCHP89fAHb_clwMB_cjR5OYMfuUdGEdQrVbLlWZybcZ_w83-VP-sOn5w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=Ditto%3A+Building+Digital+Twins+of+Articulated+Objects+from+Interaction&rft.au=Jiang%2C+Zhenyu&rft.au=Hsu%2C+Cheng-Chun&rft.au=Zhu%2C+Yuke&rft.date=2022-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=5606&rft.epage=5616&rft_id=info:doi/10.1109%2FCVPR52688.2022.00553&rft.externalDocID=9879272 |