HumanNeRF: Efficiently Generated Human Radiance Field from Sparse Inputs
Recent neural human representations can produce high-quality multi-view rendering but require using dense multi-view inputs and costly training. They are hence largely limited to static models as training each frame is infeasible. We present HumanNeRF - a neural representation with efficient general...
Saved in:
Published in | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 7733 - 7743 |
---|---|
Main Authors | , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent neural human representations can produce high-quality multi-view rendering but require using dense multi-view inputs and costly training. They are hence largely limited to static models as training each frame is infeasible. We present HumanNeRF - a neural representation with efficient generalization ability - for high-fidelity free-view synthesis of dynamic humans. Analogous to how IBRNet assists NeRF by avoiding perscene training, HumanNeRF employs an aggregated pixel-alignment feature across multi-view inputs along with a pose embedded non-rigid deformation field for tackling dynamic motions. The raw Human-NeRF can already produce reasonable rendering on sparse video inputs of unseen subjects and camera settings. To further improve the rendering quality, we augment our solution with in-hour scene-specific fine-tuning, and an appearance blending module for combining the benefits of both neural volumetric rendering and neural texture blending. Extensive experiments on various multi-view dynamic hu-man datasets demonstrate effectiveness of our approach in synthesizing photo-realistic free-view humans under challenging motions and with very sparse camera view inputs. |
---|---|
AbstractList | Recent neural human representations can produce high-quality multi-view rendering but require using dense multi-view inputs and costly training. They are hence largely limited to static models as training each frame is infeasible. We present HumanNeRF - a neural representation with efficient generalization ability - for high-fidelity free-view synthesis of dynamic humans. Analogous to how IBRNet assists NeRF by avoiding perscene training, HumanNeRF employs an aggregated pixel-alignment feature across multi-view inputs along with a pose embedded non-rigid deformation field for tackling dynamic motions. The raw Human-NeRF can already produce reasonable rendering on sparse video inputs of unseen subjects and camera settings. To further improve the rendering quality, we augment our solution with in-hour scene-specific fine-tuning, and an appearance blending module for combining the benefits of both neural volumetric rendering and neural texture blending. Extensive experiments on various multi-view dynamic hu-man datasets demonstrate effectiveness of our approach in synthesizing photo-realistic free-view humans under challenging motions and with very sparse camera view inputs. |
Author | Zhang, Jiakai Yu, Jingyi Zhang, Yingliang Lin, Pei Zhao, Fuqiang Yang, Wei Xu, Lan |
Author_xml | – sequence: 1 givenname: Fuqiang surname: Zhao fullname: Zhao, Fuqiang organization: ShanghaiTech University – sequence: 2 givenname: Wei surname: Yang fullname: Yang, Wei organization: Huazhong University of Science and Technology – sequence: 3 givenname: Jiakai surname: Zhang fullname: Zhang, Jiakai organization: ShanghaiTech University – sequence: 4 givenname: Pei surname: Lin fullname: Lin, Pei organization: ShanghaiTech University – sequence: 5 givenname: Yingliang surname: Zhang fullname: Zhang, Yingliang organization: DGene – sequence: 6 givenname: Jingyi surname: Yu fullname: Yu, Jingyi organization: ShanghaiTech University – sequence: 7 givenname: Lan surname: Xu fullname: Xu, Lan organization: ShanghaiTech University |
BookMark | eNotjktOwzAUAA0Cibb0BLDwBRLesx1_2KGobSpVgMpnWznJs2TUulGSLnp7ELCazWg0U3aVjokYu0fIEcE9lJ-v20Joa3MBQuQApnAXbIpaF0o7peUlmyBomWmH7obNh-ELAKRA1M5OWFWdDj4903b5yBchxCZSGvdnvqJEvR-p5b8C3_o2-tQQX0batzz0xwN_63w_EF-n7jQOt-w6-P1A83_O2Mdy8V5W2eZltS6fNlkUIMdMgpGkjfLQkDV1gYRGS9XallSNZLxvm9r9_EItUIFRWoSggq6pCMFZL2fs7q8biWjX9fHg-_POWQsISn4DsGpOLQ |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR52688.2022.00759 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 1665469463 9781665469463 |
EISSN | 1063-6919 |
EndPage | 7743 |
ExternalDocumentID | 9880104 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Key Research and Development Program grantid: 2018YFB2100500 funderid: 10.13039/501100012166 – fundername: STCSM grantid: 2015F0203-000-06 funderid: 10.13039/501100003399 |
GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i203t-3073e674a0ce87b51e17634d8de4b1e7aadcb90630b21407462ff4f6be5ff98a3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:15:09 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i203t-3073e674a0ce87b51e17634d8de4b1e7aadcb90630b21407462ff4f6be5ff98a3 |
PageCount | 11 |
ParticipantIDs | ieee_primary_9880104 |
PublicationCentury | 2000 |
PublicationDate | 2022-June |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-June |
PublicationDecade | 2020 |
PublicationTitle | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003211698 |
Score | 2.4585137 |
Snippet | Recent neural human representations can produce high-quality multi-view rendering but require using dense multi-view inputs and costly training. They are hence... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 7733 |
SubjectTerms | Cameras Computer vision Dynamics Entertainment industry Image and video synthesis and generation; 3D from multi-view and sensors; Face and gestures; Motion and tracking; Pose estimation and tracking Rendering (computer graphics) Telepresence Training |
Title | HumanNeRF: Efficiently Generated Human Radiance Field from Sparse Inputs |
URI | https://ieeexplore.ieee.org/document/9880104 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ09T8MwEIat0ompQIv4lgdG0ubDsWPWqlFBalUVirpVdnKWECitaDLAr-fshIIQA5sVRZfITnL3Xu4eE3ItMSg3AqSnNLdbmPHAU4L7XhYIzThGAMaxOydTPl6w-2W8bJGbXS8MALjiM-jbofuXn6-zyqbKBhIftsDCP_dQuNW9Wrt8SoRKhsuk6Y4LfDkYPs3mFmZiC7hCi-UUFkj6Yw8V50LSDpl8XbyuHHnpV6XuZx-_uIz_vbsD0vtu1qOznRs6JC0ojkiniS5p8-5uu2Ts8vVTmKe3dOTAEWju9Z3W4GkMPKk7gc4drQCNpra4jdr-E_qwQf0L9K7YVOW2Rxbp6HE49pp9FLzn0I9Km16KgAum_AwSoeMAAvyqsDzJgekAhFJ5pqWFb-kQ9ZZgPDSGGa4hNkYmKjom7WJdwAmhEaC_1xgEhKhDcobDOJFMRSi70LZJTknXTsxqU6MyVs2cnP19-Jzs26WpK68uSLt8q-ASfXypr9zifgKge6Sw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3NT8IwFMAbggc9oYLx2x48OthH125eCctUIATBcCPr9poYzSCyHfSv97WbaIwHb82yvC3t2vex936PkOsQjXIlILQSyXULM-5YieC2lTpCMo4WgDLsztGYx3N2v_AXDXKzrYUBAJN8Bl09NP_ys1Va6lBZL8SPzdHwzx3U-75TVWttIyoe-jI8DOr6OMcOe_2nyVTjTHQKl6vBnEIjSX90UTFKJGqR0dfjq9yRl25ZyG768YvM-N_32yed73I9OtkqogPSgPyQtGr7kta7d9MmsYnYj2Ea3dKBQUeguNd3WqGn0fSk5gY6NbwCFBrp9DaqK1Do4xo9YKB3-bosNh0yjwazfmzVnRSsZ9f2Ch1g8oALltgpBEL6Djh4rrAsyIBJB0SSZKkMNX5LuuhxCcZdpZjiEnylwiDxjkgzX-VwTKgHqPElmgEueiIZw6EfhCzx0PFC2So4IW09Mct1BctY1nNy-vflK7Ibz0bD5fBu_HBG9vQyVXlY56RZvJVwgRq_kJdmoT8Bakun-Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=HumanNeRF%3A+Efficiently+Generated+Human+Radiance+Field+from+Sparse+Inputs&rft.au=Zhao%2C+Fuqiang&rft.au=Yang%2C+Wei&rft.au=Zhang%2C+Jiakai&rft.au=Lin%2C+Pei&rft.date=2022-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=7733&rft.epage=7743&rft_id=info:doi/10.1109%2FCVPR52688.2022.00759&rft.externalDocID=9880104 |