HumanNeRF: Efficiently Generated Human Radiance Field from Sparse Inputs

Recent neural human representations can produce high-quality multi-view rendering but require using dense multi-view inputs and costly training. They are hence largely limited to static models as training each frame is infeasible. We present HumanNeRF - a neural representation with efficient general...

Full description

Saved in:
Bibliographic Details
Published inProceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 7733 - 7743
Main Authors Zhao, Fuqiang, Yang, Wei, Zhang, Jiakai, Lin, Pei, Zhang, Yingliang, Yu, Jingyi, Xu, Lan
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent neural human representations can produce high-quality multi-view rendering but require using dense multi-view inputs and costly training. They are hence largely limited to static models as training each frame is infeasible. We present HumanNeRF - a neural representation with efficient generalization ability - for high-fidelity free-view synthesis of dynamic humans. Analogous to how IBRNet assists NeRF by avoiding perscene training, HumanNeRF employs an aggregated pixel-alignment feature across multi-view inputs along with a pose embedded non-rigid deformation field for tackling dynamic motions. The raw Human-NeRF can already produce reasonable rendering on sparse video inputs of unseen subjects and camera settings. To further improve the rendering quality, we augment our solution with in-hour scene-specific fine-tuning, and an appearance blending module for combining the benefits of both neural volumetric rendering and neural texture blending. Extensive experiments on various multi-view dynamic hu-man datasets demonstrate effectiveness of our approach in synthesizing photo-realistic free-view humans under challenging motions and with very sparse camera view inputs.
AbstractList Recent neural human representations can produce high-quality multi-view rendering but require using dense multi-view inputs and costly training. They are hence largely limited to static models as training each frame is infeasible. We present HumanNeRF - a neural representation with efficient generalization ability - for high-fidelity free-view synthesis of dynamic humans. Analogous to how IBRNet assists NeRF by avoiding perscene training, HumanNeRF employs an aggregated pixel-alignment feature across multi-view inputs along with a pose embedded non-rigid deformation field for tackling dynamic motions. The raw Human-NeRF can already produce reasonable rendering on sparse video inputs of unseen subjects and camera settings. To further improve the rendering quality, we augment our solution with in-hour scene-specific fine-tuning, and an appearance blending module for combining the benefits of both neural volumetric rendering and neural texture blending. Extensive experiments on various multi-view dynamic hu-man datasets demonstrate effectiveness of our approach in synthesizing photo-realistic free-view humans under challenging motions and with very sparse camera view inputs.
Author Zhang, Jiakai
Yu, Jingyi
Zhang, Yingliang
Lin, Pei
Zhao, Fuqiang
Yang, Wei
Xu, Lan
Author_xml – sequence: 1
  givenname: Fuqiang
  surname: Zhao
  fullname: Zhao, Fuqiang
  organization: ShanghaiTech University
– sequence: 2
  givenname: Wei
  surname: Yang
  fullname: Yang, Wei
  organization: Huazhong University of Science and Technology
– sequence: 3
  givenname: Jiakai
  surname: Zhang
  fullname: Zhang, Jiakai
  organization: ShanghaiTech University
– sequence: 4
  givenname: Pei
  surname: Lin
  fullname: Lin, Pei
  organization: ShanghaiTech University
– sequence: 5
  givenname: Yingliang
  surname: Zhang
  fullname: Zhang, Yingliang
  organization: DGene
– sequence: 6
  givenname: Jingyi
  surname: Yu
  fullname: Yu, Jingyi
  organization: ShanghaiTech University
– sequence: 7
  givenname: Lan
  surname: Xu
  fullname: Xu, Lan
  organization: ShanghaiTech University
BookMark eNotjktOwzAUAA0Cibb0BLDwBRLesx1_2KGobSpVgMpnWznJs2TUulGSLnp7ELCazWg0U3aVjokYu0fIEcE9lJ-v20Joa3MBQuQApnAXbIpaF0o7peUlmyBomWmH7obNh-ELAKRA1M5OWFWdDj4903b5yBchxCZSGvdnvqJEvR-p5b8C3_o2-tQQX0batzz0xwN_63w_EF-n7jQOt-w6-P1A83_O2Mdy8V5W2eZltS6fNlkUIMdMgpGkjfLQkDV1gYRGS9XallSNZLxvm9r9_EItUIFRWoSggq6pCMFZL2fs7q8biWjX9fHg-_POWQsISn4DsGpOLQ
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR52688.2022.00759
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 1665469463
9781665469463
EISSN 1063-6919
EndPage 7743
ExternalDocumentID 9880104
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program
  grantid: 2018YFB2100500
  funderid: 10.13039/501100012166
– fundername: STCSM
  grantid: 2015F0203-000-06
  funderid: 10.13039/501100003399
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i203t-3073e674a0ce87b51e17634d8de4b1e7aadcb90630b21407462ff4f6be5ff98a3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:15:09 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-3073e674a0ce87b51e17634d8de4b1e7aadcb90630b21407462ff4f6be5ff98a3
PageCount 11
ParticipantIDs ieee_primary_9880104
PublicationCentury 2000
PublicationDate 2022-June
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-June
PublicationDecade 2020
PublicationTitle Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online)
PublicationTitleAbbrev CVPR
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211698
Score 2.4585137
Snippet Recent neural human representations can produce high-quality multi-view rendering but require using dense multi-view inputs and costly training. They are hence...
SourceID ieee
SourceType Publisher
StartPage 7733
SubjectTerms Cameras
Computer vision
Dynamics
Entertainment industry
Image and video synthesis and generation; 3D from multi-view and sensors; Face and gestures; Motion and tracking; Pose estimation and tracking
Rendering (computer graphics)
Telepresence
Training
Title HumanNeRF: Efficiently Generated Human Radiance Field from Sparse Inputs
URI https://ieeexplore.ieee.org/document/9880104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ09T8MwEIat0ompQIv4lgdG0ubDsWPWqlFBalUVirpVdnKWECitaDLAr-fshIIQA5sVRZfITnL3Xu4eE3ItMSg3AqSnNLdbmPHAU4L7XhYIzThGAMaxOydTPl6w-2W8bJGbXS8MALjiM-jbofuXn6-zyqbKBhIftsDCP_dQuNW9Wrt8SoRKhsuk6Y4LfDkYPs3mFmZiC7hCi-UUFkj6Yw8V50LSDpl8XbyuHHnpV6XuZx-_uIz_vbsD0vtu1qOznRs6JC0ojkiniS5p8-5uu2Ts8vVTmKe3dOTAEWju9Z3W4GkMPKk7gc4drQCNpra4jdr-E_qwQf0L9K7YVOW2Rxbp6HE49pp9FLzn0I9Km16KgAum_AwSoeMAAvyqsDzJgekAhFJ5pqWFb-kQ9ZZgPDSGGa4hNkYmKjom7WJdwAmhEaC_1xgEhKhDcobDOJFMRSi70LZJTknXTsxqU6MyVs2cnP19-Jzs26WpK68uSLt8q-ASfXypr9zifgKge6Sw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3NT8IwFMAbggc9oYLx2x48OthH125eCctUIATBcCPr9poYzSCyHfSv97WbaIwHb82yvC3t2vex936PkOsQjXIlILQSyXULM-5YieC2lTpCMo4WgDLsztGYx3N2v_AXDXKzrYUBAJN8Bl09NP_ys1Va6lBZL8SPzdHwzx3U-75TVWttIyoe-jI8DOr6OMcOe_2nyVTjTHQKl6vBnEIjSX90UTFKJGqR0dfjq9yRl25ZyG768YvM-N_32yed73I9OtkqogPSgPyQtGr7kta7d9MmsYnYj2Ea3dKBQUeguNd3WqGn0fSk5gY6NbwCFBrp9DaqK1Do4xo9YKB3-bosNh0yjwazfmzVnRSsZ9f2Ch1g8oALltgpBEL6Djh4rrAsyIBJB0SSZKkMNX5LuuhxCcZdpZjiEnylwiDxjkgzX-VwTKgHqPElmgEueiIZw6EfhCzx0PFC2So4IW09Mct1BctY1nNy-vflK7Ibz0bD5fBu_HBG9vQyVXlY56RZvJVwgRq_kJdmoT8Bakun-Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=HumanNeRF%3A+Efficiently+Generated+Human+Radiance+Field+from+Sparse+Inputs&rft.au=Zhao%2C+Fuqiang&rft.au=Yang%2C+Wei&rft.au=Zhang%2C+Jiakai&rft.au=Lin%2C+Pei&rft.date=2022-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=7733&rft.epage=7743&rft_id=info:doi/10.1109%2FCVPR52688.2022.00759&rft.externalDocID=9880104